Nef
- Virus-Cell InteractionsSERINC5 Inhibits HIV-1 Infectivity by Altering the Conformation of gp120 on HIV-1 Particles
SERINC5 is a host cell protein that inhibits the infectivity of HIV-1 by a novel and poorly understood mechanism. Here, we provide evidence that the SERINC5 protein alters the conformation of the HIV-1 Env proteins and that this action is correlated with SERINC5’s ability to inhibit HIV-1 infectivity. Defining the specific effects of SERINC5 on the HIV-1 glycoprotein conformation may be useful for designing new antiviral strategies...
- Virus-Cell InteractionsTwo Functional Variants of AP-1 Complexes Composed of either γ2 or γ1 Subunits Are Independently Required for Major Histocompatibility Complex Class I Downregulation by HIV-1 Nef
HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I...
- Virus-Cell InteractionsA Conserved Acidic-Cluster Motif in SERINC5 Confers Partial Resistance to Antagonism by HIV-1 Nef
Cellular membrane proteins in the SERINC family, especially SERINC5, inhibit the infectivity of retroviral virions. This inhibition is counteracted by retroviral proteins, specifically, HIV-1 Nef, MLV glycoGag, and EIAV S2. One consequence of such a host-pathogen “arms race” is a compensatory change in the host antiviral protein as it evolves to escape the effects of viral antagonists. This is often reflected in a genetic signature,...
- MinireviewHow HIV Nef Proteins Hijack Membrane Traffic To Promote Infection
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of...
- Virus-Cell InteractionsCharacterization of Endogenous SERINC5 Protein as Anti-HIV-1 Factor
SERINC5 is the long-searched-for antiviral factor that is counteracted by the HIV-1 accessory gene product Nef. Here, we engineered, via CRISPR/Cas9 technology, T-cell lines that express endogenous SERINC5 alleles tagged with a knocked-in HA epitope. This genetic modification enabled us to study basic properties of endogenous SERINC5 and to verify proposed mechanisms of HIV-1 Nef-mediated counteraction of SERINC5. Using this...
- Virus-Cell InteractionsPrimary HIV-1 Strains Use Nef To Downmodulate HLA-E Surface Expression
For almost two decades, it was thought that HIV-1 selectively downregulated the highly expressed HLA-I molecules HLA-A and HLA-B from the cell surface in order to evade cytotoxic-T-cell recognition, while leaving HLA-C and HLA-E molecules unaltered. It was stipulated that HIV-1 infection thereby maintained inhibition of NK cells via inhibitory receptors that bind HLA-C and HLA-E. This concept was recently revised when a study showed...
- Virus-Cell InteractionsCD4 Expression and Env Conformation Are Critical for HIV-1 Restriction by SERINC5
Restriction factors provide the first line of defense against retrovirus infection by posing several blocks to the viral replication cycle. SERINC5 is a novel restriction factor that strongly blocks HIV-1 entry, although it is counteracted by Nef. Currently, it is still unclear how HIV-1 entry is blocked by SERINC5. Notably, this entry block is dependent on viral Env proteins. Laboratory-adapted HIV-1 strains are sensitive, whereas...
- Pathogenesis and ImmunityHIV Subtype and Nef-Mediated Immune Evasion Function Correlate with Viral Reservoir Size in Early-Treated Individuals
While combination antiretroviral therapies (cART) have transformed HIV infection into a chronic manageable condition, they do not act upon the latent HIV reservoir and are therefore not curative. As HIV cure or remission should be more readily achievable in individuals with smaller HIV reservoirs, achieving a deeper understanding of the clinical, immunological, and virological determinants of reservoir size is critical to eradication...
- Virus-Cell InteractionsMurine Leukemia Virus Glycosylated Gag Reduces Murine SERINC5 Protein Expression at Steady-State Levels via the Endosome/Lysosome Pathway to Counteract SERINC5 Antiretroviral Activity
MLV glycoGag not only enhances MLV replication but also increases HIV-1 infectivity similarly as Nef. Recent studies have discovered that both glycoGag and Nef antagonize a novel host restriction factor Ser5 and promote viral replication. Compared to Nef, the glycoGag antagonism of Ser5 is still poorly understood. MLV glycoGag is a transmembrane version of the structural Gag protein with an extra 88-amino-acid leader region that...
- Virus-Cell InteractionsAn N-Glycosylated Form of SERINC5 Is Specifically Incorporated into HIV-1 Virions
SERINC5 is a member of a family of multipass transmembrane proteins that inhibit the infectivity of retroviruses, including HIV-1. These proteins are incorporated into virions and inhibit infection of target cells unless counteracted by viral antagonists such as HIV-1 Nef. The only other biological function with which these proteins have been associated is the formation of serine-containing membrane lipids. Here we show that SERINC5 is...