Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions

fusion inhibitor

  • Therapeutic Efficacy and Resistance Selection of a Lipopeptide Fusion Inhibitor in Simian Immunodeficiency Virus-Infected Rhesus Macaques
    Vaccines and Antiviral Agents
    Therapeutic Efficacy and Resistance Selection of a Lipopeptide Fusion Inhibitor in Simian Immunodeficiency Virus-Infected Rhesus Macaques

    The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for...

    Danwei Yu, Jing Xue, Huamian Wei, Zhe Cong, Ting Chen, Yuanmei Zhu, Huihui Chong, Qiang Wei, Chuan Qin, Yuxian He
  • Free
    Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity
    Vaccines and Antiviral Agents | Spotlight
    Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity

    The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from...

    Yuanmei Zhu, Danwei Yu, Hongxia Yan, Huihui Chong, Yuxian He
  • The Tryptophan-Rich Motif of HIV-1 gp41 Can Interact with the N-Terminal Deep Pocket Site: New Insights into the Structure and Function of gp41 and Its Inhibitors
    Virus-Cell Interactions
    The Tryptophan-Rich Motif of HIV-1 gp41 Can Interact with the N-Terminal Deep Pocket Site: New Insights into the Structure and Function of gp41 and Its Inhibitors

    The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled...

    Yuanmei Zhu, Xiaohui Ding, Danwei Yu, Huihui Chong, Yuxian He
  • A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus
    Vaccines and Antiviral Agents
    A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus

    Antiretroviral therapy with multiple drugs in combination can efficiently suppress HIV replication and dramatically reduce the morbidity and mortality associated with AIDS-related illness; however, antiretroviral therapy cannot eradiate the HIV reservoirs, and lifelong treatment is required, which often results in cumulative toxicities, drug resistance, and a multitude of complications, thus necessitating the development of sterilizing-...

    Xiaoran Tang, Hongliang Jin, Yue Chen, Li Li, Yuanmei Zhu, Huihui Chong, Yuxian He
  • Design and Characterization of Cholesterylated Peptide HIV-1/2 Fusion Inhibitors with Extremely Potent and Long-Lasting Antiviral Activity
    Vaccines and Antiviral Agents
    Design and Characterization of Cholesterylated Peptide HIV-1/2 Fusion Inhibitors with Extremely Potent and Long-Lasting Antiviral Activity

    The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad...

    Yuanmei Zhu, Huihui Chong, Danwei Yu, Yan Guo, Yusen Zhou, Yuxian He
  • Mutations That Increase the Stability of the Postfusion gp41 Conformation of the HIV-1 Envelope Glycoprotein Are Selected by both an X4 and R5 HIV-1 Virus To Escape Fusion Inhibitors Corresponding to Heptad Repeat 1 of gp41, but the gp120 Adaptive Mutations Differ between the Two Viruses
    Vaccines and Antiviral Agents
    Mutations That Increase the Stability of the Postfusion gp41 Conformation of the HIV-1 Envelope Glycoprotein Are Selected by both an X4 and R5 HIV-1 Virus To Escape Fusion Inhibitors Corresponding to Heptad Repeat 1 of gp41, but the gp120 Adaptive Mutations Differ between the Two Viruses

    HIV-1 fuses with cells when the gp41 subunit of Env refolds into a 6HB after binding to cellular receptors. Peptides corresponding to HR1 or HR2 interrupt gp41 refolding and inhibit HIV infection. Previously, we found that a CCR5 coreceptor-tropic HIV-1 acquired a key HR1 or HR2 resistance mutation to escape HR1 peptide inhibitors but only the key HR1 mutation to escape a trimer-stabilized HR1 peptide inhibitor. Here, we report that a...

    Min Zhuang, Russell Vassell, Chen Yuan, Paul W. Keller, Hong Ling, Wei Wang, Carol D. Weiss
  • Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion
    Virus-Cell Interactions
    Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion

    Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of...

    Giulia Torriani, Evgeniya Trofimenko, Jennifer Mayor, Chiara Fedeli, Hector Moreno, Sébastien Michel, Mathieu Heulot, Nadja Chevalier, Gert Zimmer, Neeta Shrestha, Philippe Plattet, Olivier Engler, Sylvia Rothenberger, Christian Widmann, Stefan Kunz
  • Surfactin Inhibits Membrane Fusion during Invasion of Epithelial Cells by Enveloped Viruses
    Vaccines and Antiviral Agents
    Surfactin Inhibits Membrane Fusion during Invasion of Epithelial Cells by Enveloped Viruses

    Membrane fusion inhibitors are a rapidly emerging class of antiviral drugs that inhibit the infection process of enveloped viruses. They can be classified, on the basis of the viral components targeted, as fusion protein targeting or membrane lipid targeting. Lipid-targeting membrane fusion inhibitors have a broader antiviral spectrum and are less likely to select for drug-resistant mutations. Here we show that surfactin is a membrane...

    Lvfeng Yuan, Shuai Zhang, Yongheng Wang, Yuchen Li, Xiaoqing Wang, Qian Yang
  • Structural and Functional Characterization of Membrane Fusion Inhibitors with Extremely Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus
    Vaccines and Antiviral Agents
    Structural and Functional Characterization of Membrane Fusion Inhibitors with Extremely Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus

    Development of novel membrane fusion inhibitors against HIV and other enveloped viruses is highly important in terms of the peptide drug T-20, which remains the only one for clinical use, even if it is limited by large dosages and resistance. Here, we report a novel T-20 sequence-based lipopeptide showing extremely potent and broad activities against HIV-1, HIV-2, SIV, and T-20-resistant mutants, as well as an extremely high therapeutic...

    Huihui Chong, Yuanmei Zhu, Danwei Yu, Yuxian He
  • Virus-Cell Interactions
    Reduced Susceptibility to VIRIP-Based HIV-1 Entry Inhibitors Has a High Genetic Barrier and Severe Fitness Costs

    Many viral pathogens are critically dependent on fusion peptides (FPs) that are inserted into the cellular membrane for infection. Initially, it was thought that FPs cannot be targeted for therapy because they are hardly accessible. However, an optimized derivative (VIR-576) of an endogenous fragment of α1-antitrypsin, named VIRIP, targeting the gp41 FP reduced viral loads in HIV-1-infected individuals. Characterization of HIV-1...

    Janis A. Müller, Anna Glöckle, Ali Gawanbacht, Matthias Geyer, Jan Münch, Frank Kirchhoff

Pages

  • Next
  • 1
  • 2
Back to top

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514