The time for COVID-19 vaccination

Esteban Domingoa,b,* and Celia Peralesa,b,c,*

aDepartment of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain

bCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain

cDepartment of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM) Av. Reyes Católicos 2, 28040 Madrid, Spain

*Corresponding authors: Esteban Domingo (edomingo@cbm.csic.es) and Celia Perales (celia.perales@quironsalud.es)
Abstract

The composition and dynamics of viral mutant spectra in infected individuals advice that to avoid selection of SARS-CoV-2 escape mutants, vaccination campaigns for COVID-19 should be launched when disease incidence is low.

Commentary

The protective efficacy of a COVID-19 vaccine will be influenced by the ability of the circulating virus to overcome the evoked immune response. This requirement depends on the amount of virus confronted by the vaccinated population when the latter is in the process of mounting a protective response. The rapid rate of SARS-CoV-2 evolution (averaging 1 x 10^{-3} mutations introduced per genomic residue and year), together with the genetic heterogeneity of the virus inside each infected individual (1), provide fertile terrain for selection of vaccine-escape mutants or vaccination-driven virus evolution (2). The problem is not a mere theoretical conjecture given the occurrence in the SARS-CoV-2 genome not only of point mutations but also of insertions-deletions (indels, gains and losses of pieces of genetic material) in the region encoding the spike (S) protein (several data bases) whose expression is relied upon for evoking the immune response. S alterations may abolish antigenic determinants and promote selection of antibody-escape virus mutants (3). Variability of RNA viruses is due to the limited fidelity of their replicases, and the absence of error-correcting activities. However, coronaviruses include in their replication complex a 3’-5’ exonuclease domain that may decrease about 15-fold their mutation rate. In the case of SARS-CoV-2 it is not clear if the fidelity of the core polymerase is comparable to that of other RNA viruses, if the 3’-5’ exonuclease lowers the mutation rate and to what extent, and if the copying fidelity is influenced by other subunits of the replication
complex (4, 5). Whatever the mechanism, the capacity of SARS-CoV-2 to
generate variant genomes seems remarkable.

Viral dynamics implies that the probability of any potential escape
mutant being present is higher the higher the number of circulating viral
populations. That is, even if mutation frequency is independent of the
population size (intrinsic property), the probability of an individual
mutation or indel to be found is proportional to the total size of circulating
virus (extrinsic property) (6). This concept validates at the public health
level the classic Phil Anderson dictum “more is different” (7), regarding
the significance of cumulative viral population size in the supply of
individual mutant types. Therefore, despite understandable current
urgencies, it would be highly advisable to consider the epidemiological
context at the time of initiation of a vaccination campaign. Specifically, for
countries where vaccination plans are still pending, vaccination campaigns
should be implemented when COVID-19 is at an incidence valley.

References
1. Al Khatib HA, Benslimane FM, Elbashir IE, Coyle PV, Al Maslamani
 MA, Al-Khal A, Al Thani AA, Yassine HM. 2020. Within-Host Diversity
 of SARS-CoV-2 in COVID-19 Patients With Variable Disease Severities.
3. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC,
 Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E, Gaebler C,
 Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC,
 Hatzioannou T, Bieniasz PD. 2020. Escape from neutralizing antibodies

Acknowledgements

Work in our laboratories supported by Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation (COVID-19 Research Call COV20/00181) — co-financed by European Development Regional Fund “A way to achieve Europe”. Also, grants CSIC-COV19-014, SAF2017-87846-R and BFU2017-91384-EXP from Ministerio de Ciencia, Innovación y Universidades (MICIU), PI18/00210 from ISCIII and S2013/ABI-2906 and S2018/BAA-4370 (PLATESA) from Comunidad de Madrid/FEDER. C.P. is supported by the Miguel Servet program of ISCIII (CPII19/00001), cofinanced by the European Regional Development Fund (ERDF). CIBERehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas) is funded by ISCIII. Institutional grants from Fundación Ramón Areces and Banco Santander to CBMSO are also acknowledged.