A versatile reporter system to monitor virus infected cells and its application to
dengue virus and SARS-CoV-2

Felix Pahmeiera, Christopher J Neufelda, Berati Cerikana, Vibhu Prasada, Costantis
Papeb,c, Vibor Laketad, Alessia Ruggieria, Ralf Bartenschlagera,d,e,\#, Mirko Cortesea,\#

aDepartment of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
bHCI/IWR, Heidelberg University, Heidelberg, Germany
cEuropean Molecular Biology Laboratory, Heidelberg, Germany
dGerman Center for Infection Research, Heidelberg partner site, Heidelberg, Germany
eDivision “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany

Address correspondence to:
\texttt{ralf.bartenschlager@med.uni-heidelberg.de}
\texttt{mirko.cortese@med.uni-heidelberg.de}

Running title: A reporter system for SARS-CoV-2 and dengue viruses

Keywords: SARS-CoV-2; dengue virus; live cell imaging; reporter system; reporter cell lines; viral proteases

Word count for the abstract: 193
Word count for the text: 5363
ABSTRACT

Positive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of this include flaviviruses, such as dengue virus and Zika virus that cause millions of yearly infections around the globe, and coronaviruses, such as SARS-CoV-2, the source of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of research aimed at determining methods to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective treatments. Here, we describe the generation and characterization of a reporter system that can be used to visualize and identify cells infected with dengue virus or SARS-CoV-2. This system is based on viral protease activity that mediates cleavage and nuclear translocation of an engineered fluorescent protein stably expressed in cells. We show the suitability of this system for live cell imaging, for visualization of single infected cells, and for screening and testing of antiviral compounds. With the integrated modular building blocks, this system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.

IMPORTANCE

Reporter systems are useful tools for fast and quantitative visualization of virus infected cells within a host cell population. Here we describe a reporter system that takes advantage of virus-encoded proteases that are expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the GFP moiety translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae.
families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.

INTRODUCTION

Positive-sense single-stranded RNA viruses constitute a major fraction of endemic and emerging human viruses (1). Among the positive-strand RNA viruses, flaviviruses such as dengue virus (DENV) and Zika virus (ZIKV) are some of the most prevalent arboviral pathogens and are considered a major public health problem (2, 3). Currently, there are no universal vaccines or specific antiviral drugs approved for the prevention or treatment of infections with these viruses (4). Members of the Coronaviridae family also have a positive-strand RNA genome and have caused several major outbreaks in the last two decades (5, 6). Currently, the world is facing the pandemic outbreak of SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19) (7, 8). As of November 2020, over 54 million confirmed cases and more than 1.3 million confirmed deaths have been reported in 216 countries (9). Despite immense efforts by research teams around the world, there is still a dire need for effective and widely available treatment options and a prophylactic vaccine. Once released into the cell, the full genome of flaviviruses and the large open reading frame (ORF1ab) of coronaviruses are translated as polyproteins. Signal peptides and internal transmembrane regions direct polyprotein synthesis to the endoplasmic reticulum (ER) membrane where co-translational cleavage generates the mature viral proteins (10, 11). The flaviviral protease NS2B/3, together with host proteases, cleaves the flavivirus polyprotein into three structural and seven non-structural
proteins (12). In the case of coronaviruses, ORF1ab is expressed as two polyproteins, which are cleaved into sixteen non-structural proteins (nsp) by the viral papain-like protease (PLpro) residing in nsp3 and the 3C-like protease (3CLpro) of nsp5 (13-16). The replication of viral RNA for both virus groups occurs on ER derived membranes, in specialized virus-induced membrane compartments termed replication organelles (10-12, 17, 18).

Reporter systems for detection of virus infection are an invaluable tool for the characterization and quantification of virus infection kinetics, for the characterization of virus-host cell interactions, and for the identification of antiviral compounds. One approach is the insertion of tags into the viral genome that, upon replication and translation, allow for visualization of the infected cells. However, this approach requires functional molecular clones of a given viral genome, which are not always available. In addition, insertion of a tag frequently causes attenuation of viral replication competency and therefore, the search for adequate insertion sites is time-consuming and often fails.

An alternative approach is the use of engineered fluorescent reporter proteins stably expressed in cells that are altered upon virus infection (19-21). Building on this idea, we established a reporter system based on an ER-anchored green fluorescent protein (GFP) that, upon cleavage by a viral proteases, is released from the ER and translocated to the nucleus. Using this system, we demonstrate reliable reporting activity for DENV and SARS-CoV-2 infected cells. Moreover, we have applied this reporter cell system to live cell imaging and the assessment of an antiviral compound.

MATERIALS AND METHODS

Cell lines and virus strains. HEK-293T, A549 and VeroE6 cells were purchased from ATCC; Huh7 cells (22) were obtained from Heinz Schaller (Center for
Molecular Biology, Heidelberg). Generation of the cell lines Huh7-Lunet and the derivative Huh7-Lunet-T7, stably expressing the RNA polymerase of bacteriophage T7, have been previously described (23, 24). All cells were cultured at 37°C and 5% CO₂ in Dulbecco’s modified Eagle medium (DMEM, Life Technologies) containing 10% fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin and 1% non-essential amino acids (complete medium). Huh7-Lunet-T7 cells were cultured in complete medium, supplemented with 5 µg/mL zeocin.

Wild-type (WT) DENV2 was produced from an infectious molecular clone based on strain 16681 as described elsewhere (25). DENV serotype 1 (strain Hawaii), DENV serotype 3 (strain H87) and DENV serotype 4 (strain H241) viruses (kindly provided by Progen Biotechnik GmbH, Germany) were amplified in C6/36 insect cells and titers were determined by plaque assay. The DENV reporter virus genome encoding the Turbo fluorescent protein 635 (DENV-faR) has been described previously (26). SARS-CoV-2 (strain BavPat1) was kindly provided by Prof. Christian Drosten (Charité Berlin, Germany) through the European Virology Archive. For the generation of virus stocks, VeroE6 cells were infected with the different viruses. Supernatants were harvested, filtered, and virus concentration was determined by plaque assay. For infection experiments, cells were inoculated as specified in the results section for 1 h at 37°C. Fresh complete medium was then added, and cells were incubated for the indicated time spans.

Virus titration. Titers of infectious virus were assessed by semi-solid plaque assay. Briefly, VeroE6 cells were inoculated with serially-diluted filtered supernatants harvested from virus infected cells. One hour post infection, medium was replaced with plaque medium containing 1.5% or 0.8% carboxymethylcellulose in MEM (Life Technologies) for DENV and SARS-CoV-2, respectively. The cells were fixed by
addition of formaldehyde (5% final concentration) to SARS-CoV-2 or DENV2 infected cells 3 or 7 days after infection, respectively. Cell monolayers were stained for 15 min with crystal violet (1%), dissolved in 10% ethanol. After extensive washing, plaques were counted and titers calculated taking dilutions into account.

Antibodies. The antibodies used in this study are listed in Table 1.

Generation of the reporter construct. A synthetic DNA construct containing the sequence encoding the reporter protein was generated by Integrated DNA technologies (Coralville, IA, USA). The reporter sequence was inserted into the lentiviral vector pWPI via AscI and SpeI restriction sites (pWPI-RC). Oligonucleotides encoding the protease cleavage sites were designed to allow insertion into the vector via MluI and BamHI restriction sites. The primer pairs (Table 2) spanning a given protease cleavage site were heated to 95°C and allowed to anneal by decreasing the temperature in 5°C increments every 2 min. The resulting double-stranded DNA product was inserted via MluI and BamHI into pWPI-RC and ligation products were amplified in E. coli (strain DH5α). Integrity of amplified plasmids was confirmed by restriction pattern analysis and sequence analysis of the insert region, respectively. The complete nucleotide and amino acid sequences of the reporter construct are available on request. The expression of the reporter construct was under the control of the eukaryotic translation elongation factor 1-alpha promoter.

Lentiviral transduction and generation of reporter cell lines. Cells stably expressing the protease reporter constructs were generated by lentiviral transduction. Subconfluent HEK-293T cells were transfected with the pWPI vector encoding the reporter construct together with packaging plasmids pCMV-Gag-Pol and pMD2-VSV-G (kind gifts from D. Trono, EPFL, Lausanne). After 2 days, the supernatant of transfected cells was harvested, filtered, and stored at -80°C. Lentiviruses were
titrated by SYBR green I-based real-time PCR-enhanced reverse transcriptase (SG-PERT) assay (27, 28) using the Takyon SYBR green kit (Eurogentec). The titer was determined by comparison with a standard curve of known RNA concentrations. Lentiviral transduction was performed by addition of the filtered supernatant to Huh7, Huh7-Lunet-T7 or A549-ACE2 cells (multiplicity of infection (MOI) = 5) in presence of 4 µg/mL of polybrene. For the generation of stable cell lines expressing the reporter constructs, cells were cultured in medium containing 1 µg/mL puromycin. Cells stably expressing the SARS-CoV-2 optimized reporter construct were FACS-sorted to obtain single cell clones with homogenous expression levels of the fluorescent reporter.

Indirect immunofluorescence (IF). Cells were seeded on glass cover slips and harvested at the indicated time points. The cells were washed once with PBS and fixed with paraformaldehyde (PFA, 4%) at room temperature (RT). PFA was removed, cells were washed once with PBS and the cover slips were covered with PBS containing Triton X-100 (0.2%) to permeabilize the cells. Cells on cover slips were blocked with skimmed milk (2%) in PBS containing Tween20 (PBS-T (0.02%)) for 1 h. After blocking, the cover slips were placed on 30 µL of primary antibody, diluted in the blocking buffer, with the cell side facing the drop. Cells were incubated for 1.5 h at RT and washed thrice with PBS-T (0.02%). The cover slips were then placed on 30 µL of secondary antibody with the cell side facing the drop. After 45 min of incubation at RT, the cells were washed thrice with PBS-T (0.02%) and cover slips were mounted on microscopy slides using Dapi-Fluoromount-G mounting media (Southern BioTech).

Western blot. Cells were washed once with PBS and lysed in western blot lysis buffer (1% Triton X-100). After sonification and denaturation at 95°C, protein
concentration was measured by Bradford assay. Cell lysates were mixed with Bradford reagent (1:5) and absorbance was measured at 595 nm. For each sample, 10 µg of total lysate was resolved by electrophoresis into a 10% or 15% sodium dodecyl sulfate-polyacrylamide gel for NS3 or GFP, respectively. Proteins were transferred to a polyvinylidene fluoride membrane overnight. Membranes were blocked in skimmed milk (5%) in PBS-T (0.2%) for 1 h at RT. After washing thrice with PBS-T (0.2%) for 15 min, membranes were incubated with primary antibody for 1 h at RT. The membranes were washed thrice and HRP-conjugated secondary antibody was added. After incubation for 1 h at RT, the membrane was washed thrice, and the bound antibodies were detected using enhanced chemiluminescence solution (Perkin Elmer, Waltham, MA, USA). Images were acquired using the ChemoCam 6.0 ECL system.

Live cell imaging. Huh7-Lunet-T7 cells expressing the dengue reporter constructs (Lunet-T7-RC) were seeded onto a glass bottom 33 cm² dish (Mattek) at a density of 2 x 10⁴. Transfection of the pIRO-D system (29) was performed 24 h post-seeding using TransIT-LT1 (Mirus) transfection reagent according to the manufacturer’s instructions. Four hours post transfection (hpt) the transfection medium was exchanged for complete medium lacking phenol red (imaging medium). Images were collected with a Perkin Elmer spinning disk confocal microscope. For SARS-CoV-2 live cell imaging, A549-ACE2 or a selected clone of A549-ACE2 stably expressing the fluorescent reporter (A549-ACE2-RC), were seeded on 35 mm Ibidi dishes with gas permeable membrane and sealable lid. Cells were infected for 1 h with SARS-CoV-2 (MOI = 10) and 2 hpi the medium was exchanged for imaging medium. Lid was moved to the locked position and silicon was used to seal the dish in order to prevent evaporation. Images were collected with a Nikon Eclipse Ti widefield.
microscope. Multiple observation fields were imaged for 8 h or 18 h at an interval of 20 min for transfection or infection, respectively.

Compound screening assay. A549-ACE2 reporter cells (clone C2) were seeded in duplicates for each condition. On the next day, the cells were treated with a 1:3 serial dilution, starting at 10 µM Remdesivir, or with the solvent dimethyl sulfoxide (DMSO) serving as a control. After 30 min, cells were infected with SARS-CoV-2 (MOI = 5) in the presence of the compound for 2 hours. Supernatants were aspirated and medium with compound was added to the cells. Supernatants were collected 16 h post infection and virus titers were determined by plaque assay. Infected cells were fixed with 6% paraformaldehyde and stained for N protein by IF. Images were acquired with a Perkin Elmer spinning disk confocal microscope. Signal intensity of N protein staining and nuclear GFP signal was quantified on a single cell level by a semi-automated image analysis workflow (30). Cells were considered infected when the signal intensity of nuclear GFP was higher than 7,000 arbitrary fluorescence units. Inhibition was quantified by normalizing the values to those obtained with cells that were treated with DMSO only (no inhibition). Alternatively, we quantified the number of cells with nuclear GFP using a semi-supervised machine-learning pipeline based on CellProfiler and CellProfiler Analyst software as described earlier (31). The software package is available upon request.

Bioinformatic analysis. Images were analyzed using the Fiji software (32, 33). Graph generation and statistical analysis was performed using the GraphPad Prism 8.1 software package. The scheme of the assumed reporter topology was designed with the Illustrate software (34) using the RCSB PDB entries 4EVL, 4RXH (chain A), 4CG5 (chain C) and 2VBC (chain B).
Design and characterization of DENV reporter constructs.

In order to generate a reporter system that can specifically indicate virus infection, we designed a construct to express a GFP fusion protein that could be selectively cleaved by viral proteases. The reporter construct was engineered for viruses that produce ER tethered polyproteins that are processed by viral proteases in close proximity to ER membranes. The TM domain of the ER resident protein sec61β was used to target the reporter protein to ER membranes (Figure 1). This ER anchor was connected to a GFP moiety containing the simian virus 40 (SV40) large T-Antigen nuclear localization signal (NLS) sequence via a variable linker. The linker region was flanked by restriction enzyme recognition sites allowing the easy insertion and screening of different protease cleavage sequences (Figure 1A). Protease cleavage of the linker would result in GFP translocation from the cytosolic ER to the nucleus, which can be easily detected and quantified by light microscopy.

The DENV polyprotein is cleaved into the individual viral proteins by either the host signal peptidase or the viral NS2B/3 serine protease (35, 36). The ER-resident NS2B protein acts as a co-factor of NS3 protease and anchors it to ER membranes (37, 38). To determine an optimal system for reporting DENV infection, several previously described NS2B/3 specific cleavage sequences were inserted into the reporter construct (Table 3).

Reporter cell lines for each of the constructs were generated by lentiviral transduction of Huh7 cells at an MOI of 5 to ensure maximal transduction efficiency. Subsequently, the cell pools expressing an individual construct were infected with DENV2 for 48 h (MOI = 5). Reporting activity for each cell line was tested by assessing the subcellular GFP localization by IF in infected versus non-infected cells.
To ensure specificity of GFP translocation, cells were fixed and stained for DENV2 NS3 protein.

In DENV2 infected cells, NS3 was observed in the perinuclear region as previously described (10, 17, 41). In uninfected cells, GFP signal from cells expressing the reporter constructs 1, 2, 3 and 7 showed an ER-like pattern and cells expressing constructs 4, 5, 6 and 8 showed nuclear GFP signal already in the absence of DENV2 (Figures 2A and 2B). In infected cells expressing reporter construct 1, a noticeable increase of nuclear GFP signal was observed (Figure 2C). Similar nuclear GFP accumulation was also observed in reporter cell lines expressing constructs 3, 4, 5, 7, and 8 upon DENV2 infection. No clear differences of GFP localizations were seen for constructs 2 and 6 following virus infection. Among all the tested constructs, construct 1 showed the highest number of cells double positive for nuclear GFP signal and NS3 staining, with only ~6% of cells positive for NS3 staining alone (Figures 2C and 2D).

To further investigate cleavage of the reporter proteins in DENV2 infected cells, we used western blot analysis of cell lysates prepared 48 h post infection (Figure 2E). Based on the construct design, the uncleaved GFP-NLS fusion protein was predicted to have a molecular weight of ~34 kDa. In the uninfected cells, we observed a GFP protein with the expected molecular weight and an additional band with an apparent lower molecular weight (Figure 2E, left panel). Upon DENV2 infection, additional ~30 kDa GFP antibody-reactive proteins were detectable in lysates of cells transduced with reporter constructs 1, 4, 5 and 7, and, to a lesser extent, in lysates of cells transduced with constructs 3 and 8. This is consistent with the predicted molecular weight of the cleavage product. However, we noted that the cleavage product obtained from lysates expressing construct 1 had an apparent molecular weight slightly lower
than expected. This difference could be due to the amino acid sequence at the C-terminus of the cleavage product or further trimming by cellular enzymes.

With the aim to evaluate the suitability of this reporter system for the other DENV serotypes, we focused on reporter construct 1, which gave the best results with respect to cleavage and nuclear translocation of the GFP cleavage product. Huh7 cells transduced with this reporter (designated from here on Huh7-RC) were infected with DENV strains corresponding to the 4 different serotypes and infection was monitored by immunostaining of double-stranded RNA (dsRNA), an intermediate of viral genome replication (Figure 2F). In all cases, we observed a strong correlation between dsRNA staining and nuclear accumulation of GFP showing that the reporter system is broadly applicable for all DENV serotypes.

Time-course experiments confirm early and reliable identification of DENV NS2B/3 positive cells.

Next, we analyzed the kinetics of GFP translocation in the Huh7-RC reporter cell line. Cells were infected with either the WT DENV2 or with a recombinant DENV reporter expressing a far-red fluorophore (DENV-faR; MOI = 5) (26). Cells were fixed at 24 h, 48 h, or 72 h post infection and subsequently analyzed by wide-field fluorescence microscopy (Figure 3A).

Uninfected reporter cells exhibited the predicted ER-like localization of the GFP signal. In contrast, reporter cells infected with WT virus showed nuclear GFP localization as early as 24 h after infection and the proportion of cells showing nuclear signal increased at later time points (Figure 3A). Reporter cells infected with DENV-faR showed a similar trend, although a lower number of reporting cells was observed at 24 h and 48 h post infection in comparison to WT infected reporter cells (Figure 3A), consistent with lower replication capacity of the reporter virus (26).
infected with DENV-faR showed an increase of red fluorescence signal in a time-dependent manner providing evidence for viral replication and spread. Importantly, ~83-100% of cells exhibiting red fluorescence also showed nuclear translocation of GFP at 48 h or 72 h post infection, respectively (Figure 3B). Additionally, only 2-3% of cells were positive for nuclear GFP in absence of reporter virus signal.

To assess the correlation of nuclear GFP translocation and viral replication kinetics, reporter cells were infected with DENV2 and viral replication was monitored by IF staining of dsRNA at different time points after infection. As shown in Fig. 3D, the percentage of dsRNA-positive cells correlated well with the percentage of cells showing nuclear GFP across the different time points (Figure 3D). These results demonstrate that the reporter system allows the reliable detection of DENV infected cells at different time points after infection without the need for fixation and intracellular staining.

Live cell imaging of cells expressing the DENV polyprotein.

Recently, a plasmid-based expression system for induction of DENV replication organelles in transfected cells has been described (29). This system, designated plasmid-induced replication organelle-dengue (pIRO-D), encodes the viral polyprotein that is translated from an RNA generated in the cytoplasm by a stably expressed T7 RNA polymerase. In this way, the pIRO-D system allows the analysis of viral proteins in cells, independent of viral replication. However, since no fluorescent protein coding sequence is incorporated into the construct, expression of the DENV polyprotein cannot be followed by live cell imaging.

To overcome this limitation, we determined whether our DENV reporter cell line could be combined with the pIRO-D system to analyze the expression of the viral polyprotein in real-time. Huh7-Lunet cells stably expressing the T7 RNA polymerase
and the reporter construct 1 (Lunet-T7-RC) were seeded in dishes with glass bottoms and on the next day transfected with the pIRO-D construct (Figure 3E). The growth medium was changed to imaging medium at 4 h after transfection and the dishes transferred to a live cell imaging microscope. The GFP signal was recorded every 10 min for 8 h (final time point at 12 h post transfection). Representative images of mock transfected and pIRO-D transfected cells at 2 h increments are shown in Figure 3F; a video spanning an 8 h observation period of transfected cells is shown in supplementary movie S1.

No nuclear translocation of the GFP reporter was detected in mock transfected Lunet-T7-RC cells (Figure 3F, upper row). In pIRO-D transfected cells, nuclear localization was already detected in cells as early as 4 h post transfection, suggesting a robust expression of the viral polyprotein. The number of cells with nuclear GFP signal as well as the intensity of the nuclear signal increased over time.

Development of a reporter system for identification of SARS-CoV-2 infected cells.

The recent outbreak of SARS-CoV-2 has created a dire need for tools to characterize virus infection and develop therapeutics. Therefore, we adapted and optimized our reporter system for the detection of SARS-CoV-2 infection. The first two open-reading frames of coronaviruses are expressed as polyproteins ORF1a/b which are cleaved into the individual proteins by viral proteases PL_{pro} and 3CL_{pro} (13-15). The sequence of the SARS-CoV-1 Frankfurt isolate was analyzed to determine the protease cleavage sites between individual nsps, and the deduced sequences were inserted into the linker region of our reporter construct (Table 4). The generation of constructs 2, 11 and 13 failed at the cloning stage and they were not further pursued.
Cells expressing the GFP reporter containing the individual cleavage site linkers were generated by lentiviral transduction of A549 cells stably expressing the SARS-CoV-2 receptor ACE2 (A549-ACE2) (42). Productive infection of the cells with SARS-CoV-2 (strain BavPat1) was determined by detection of dsRNA 48 h post infection. Cytosolic GFP localization was observed in all uninfected cells expressing the reporter constructs except for construct 3, where nuclear signal was evident (Figures 4A and 4B). No clear differences in GFP localization between uninfected and virus infected cells were observed for reporter constructs 1, 5 and 7 (Figure 4C), arguing for inefficient cleavage, perhaps because of poor accessibility of the cleavage site outside the context of the authentic viral polyprotein. For all the other constructs we detected an increase in nuclear GFP signal upon infection, with the reporter construct 14 cell line showing the highest number of cells positive for both dsRNA and nuclear GFP (Figure 4C and 4D). Therefore, we used the cell line expressing construct 14 for the further development of our SARS-CoV-2 reporter system.

Since transiently transduced cells expressing the SARS-CoV-2 reporter construct showed highly heterogeneous GFP signal intensity and large fluorescent aggregates (Figures 4A and 4C), we generated single cell clones by FACS sorting for cells with low total GFP signal. Among the twenty cell clones generated, clone C2 was selected based both on SARS-CoV-2 infection susceptibility and reporting activity (data not shown). SARS-CoV-2 infection of this A549-ACE2 reporter cell clone showed a time-dependent increase in nuclear GFP translocation events that highly correlated with the increase in cells positive for the viral N protein (Figure 4F). Thus, the newly established reporter cell line allowed for robust detection of SARS-CoV-2 infected cells and viral replication kinetics.

Live cell imaging of SARS-CoV-2 infection.
Previous studies have determined that a complete virus replication cycle can occur within 6 h after infection, but that virus replication and assembly continues to increase up to 24 h in A549-ACE2 cells (42). To characterize the dynamics of SARS-CoV-2 infection in the A549-ACE2 reporter cell clone, we performed live cell imaging (Figure 5A). Imaging was started at 2 h post infection and images were acquired every 10 min for 18 h (final time point 20 h post infection) (supplemental Movie S2).

Representative images of uninfected and SARS-CoV-2 infected cells are shown in Figure 5B. Uninfected cells exhibited an ER-like GFP signal throughout the observed time frame. In infected cells, a time-dependent increase in the numbers of cells showing nuclear GFP signal was observed with the earliest translocation event starting at 5.5 h post infection (supplementary Movie S2). These data demonstrate the suitability of our reporter system for live cell imaging analysis of SARS-CoV-2 infection.

Application of the SARS-CoV-2 reporter for drug screening.

The need for effective treatment of COVID-19 prompted us to investigate the suitability of the reporter cell line for drug screening. A proof-of-concept experiment was performed by using the nucleoside analogue Remdesivir, which is currently the only FDA-approved drug for treatment of SARS-CoV-2 infection. Both the A549-ACE2 C2 reporter clone and the parental A549-ACE2 cells without reporter construct expression were incubated with serial dilutions of Remdesivir for 30 min and infected with SARS-CoV-2 (MOI = 5). The compound remained present throughout the duration of the experiment. Cells were fixed at 16 h post infection and GFP translocation was evaluated using confocal microscopy.

Treatment with 1.1 µM Remdesivir reduced viral N protein fluorescence signal in both cell lines below the detection limit, confirming the previously described antiviral
activity of this nucleoside analogue (43, 44) (Figure 5C). Nuclear GFP signal was observed in DMSO treated reporter cells infected with SARS-CoV-2 confirming the reporting activity of the cell line. The percentage of cells displaying nuclear GFP signal and cytosolic N protein staining in the different Remdesivir dilutions was quantified by semi-automated image analysis workflows (30, 31) (Figure 5D). The IC₅₀ calculated for the N protein staining was 143 nM, in line with IC₅₀ values calculated by plaque assay (IC₅₀ = 129 nM). Quantification using the reporter signal gave an IC₅₀ of 59 nM. This decrease in IC₅₀ value is likely due to reduced sensitivity of the reporter construct that relies on 3CLₚₚₚₚ activity and the higher background in the read-out in comparison to IF staining of the highly abundant N protein. Nevertheless, the two IC₅₀ values differ by only a factor of ~3 and therefore are quite comparable. Thus, our reporter system can be reliably used in primary screens to screen large compound libraries.

DISCUSSION

This study describes the generation and characterization of a fluorescence-based reporter system for detection of DENV and SARS-CoV-2 infection. The reporter construct contains three functional elements: a fluorescent protein fused to an NLS, the TM domain of sec61β for ER membrane anchoring and an exchangeable protease cleavage site cassette located within the linker region that connects the fluorescent protein and the ER anchor. This design allows easy adaptation of the reporter system to other viruses that encode for specific viral proteases, especially for other positive-stranded RNA viruses replicating in the cytoplasm. The high selectivity and specificity of the constructs, as shown by IF, western blot and live cell imaging, render this tool suitable for applications that require single cell analysis, such as live cell imaging and correlative light-electron microscopy (CLEM) approaches.
Moreover, combining our reporter cell lines with image analysis pipelines that quantify nuclear translocation events allows for rapid and robust assessment of antiviral efficacy of compounds or other antiviral interventions, including high-throughput screening of large compound libraries.

Among the different cleavage sites tested for DENV, reporter construct 1, composed of the cleavage site between capsid and prM, allowed reliable and selective identification of infected or transfected cells with a construct expressing the viral polyprotein (Figures 2 and 3). Interestingly, for several DENV reporter constructs, nuclear GFP localization was observed in absence of the viral protease (Figure 2A). A possible explanation for this could be that unspecific cleavage of the linker region might be mediated by cellular proteases due to high levels of expression of the reporter construct upon transient transduction.

Reporter constructs for detection of flavivirus infection have been described previously which were either cytosolic or employed viral non-structural proteins as ER anchors (19-21, 40). Most of these reporter systems rely on the expression of large fragments of viral proteins (19-21) which can alter the physiological stoichiometry of the viral proteins and induce undesired pleiotropic effects. Indeed, even expression of single NS proteins can affect cellular functions, such as alteration of mitochondrial morphodynamics by NS4B (45). In contrast, since our reporter construct does not contain viral sequences, except for the cleavage site, it is less prone to affect cellular or viral pathways and processes.

The flexibility granted by the modular nature of our constructs allows for simple adaptation of the reporter system to different viruses that encode proteases acting in close proximity of the ER membranes. This allowed us to rapidly adapt the system for the detection of SARS-CoV-2 infection in cell culture. Transient transduction of cells
with lentiviruses coding for the different constructs allowed fast screening and identification of the most suitable cleavage site (Figure 4). Notably, while it was sufficient to use cell pools under antibiotic selection for DENV reporter cell lines Huh7-RC and Lunet-T7-RC, we had to establish single cell clones for the SARS-CoV-2 reporter proteins because in most cells, large fluorescent aggregates were observed (Figure 4A). This is likely due to differences in the ability of cell lines to respond to high levels of GFP fusion proteins. In addition to sorting for cells with lower reporter expression as done here, this problem might be overcome by employing promoters with lower transcriptional activity or by using alternative fluorescent proteins.

Live cell imaging demonstrated that SARS-CoV-2 infected cells can be identified as early as 5.5 h post infection (Supplementary Movie S2). Real-time identification of SARS-CoV-2 infected cells is currently mainly performed by employing recombinant viruses expressing reporter genes (46-48). While these studies report robust and reliable identification of infected cells, our reporter cell line has advantages in certain settings. The use of reporter viruses requires molecular clones and the adaptation of the genomic sequence for each different isolate, which for viruses with large RNA genomes like SARS-CoV-2, involves substantial cloning efforts. Additionally, the relatively high mutation and recombination rate of RNA viruses during genome replication makes reporter viruses inherently unstable. Moreover, integration of a reporter gene into the recombinant virus may attenuate the replication efficiency, as observed when comparing WT to DENV-faR virus infection (Figure 3B). In contrast, our cell line allows the detection of wildtype virus isolates, although in this system conserved cleavage site sequences are required.
We tested the suitability of the SARS-CoV-2 optimized reporter cell line to assess the antiviral activity of Remdesivir and determined an IC$_{50}$ of 59 nM in our reporter system. By using N staining as an alternative read-out, we obtained a somewhat lower efficacy of Remdesivir (IC$_{50}$ = 143 nM) which is closer to the data reported in the literature (43, 44, 49). The reduced sensitivity of the reporter construct, which relies on 3CL$_{pro}$ activity and GFP translocation, might stem from a failure to detect cells with low levels of infection whereas the highly expressed N protein is already detectable by IF. Additionally, the selected cell clone 2 might differ in Remdesivir metabolism which can impact the antiviral efficacy of the nucleoside analogue. It is important to note that the IC$_{50}$ value varies depending on which cell lines and assays are employed and the IC$_{50}$ values determined in this study are in a similar range with only a 3-fold difference. Nevertheless, compounds found to exhibit antiviral activity in our reporter construct should be further validated by methods such as plaque assay and/or viral RNA level quantification. Therefore, the reporter cell line can be employed in a primary screen to lower the number of candidates for validation in more sophisticated and time-consuming assays, thus reducing costs and increasing speed.

Two additional applications of our system shall be mentioned. The first is the use for CLEM, a powerful imaging method that can be used to mark and identify cells of interest amongst a large number of non-infected or un-transfected cells, and subsequently analyze traced cells by electron microscopy (50). Secondly, the reporter cell line as described here can also be employed for protease inhibitor screens in areas that do not have access to biosafety level 3 laboratories. This can be done by transient or stable expression of the protease individually and monitoring of the reduction of nuclear GFP as a result of protease inhibition, similar to a recent study (51).
In conclusion, we describe a reporter system suitable for the detection of DENV and SARS-CoV-2 infected cells. The system is easy to handle and flexible and should be applicable to any virus encoding a cytoplasmic protease. It is suitable for a large number of methods and assays, including high content screening. In all these respects, we expect this tool to facilitate investigations of virus-host interactions, but also the development of antiviral drugs that are urgently needed to curb pandemic viruses such as SARS-CoV-2.

ACKNOWLEDGEMENT

We are grateful to Monika Langlotz and to the ZMBH Flow Cytometry and FACS Core Facility (FFCF, Heidelberg, Germany) for sorting the A549-ACE2-RC cells. We would like to acknowledge the microscopy support from the Infectious Diseases Imaging Platform (IDIP) at the Center for Integrative Infectious Disease Research, Heidelberg, Germany. This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 240245660 – SFB 1129 (TP11 and TP13) to A.R. and R.B. V.P. is supported by a European Molecular Biology Organization (EMBO) long term fellowship (ALTF 454-2020)

REFERENCES

FIGURE LEGENDS

Figure 1: Schematics of the reporter construct (A) and the predicted membrane topology (B). A) Arrows indicate restriction sites for MluI and BamHI that flank the linker region and allow the insertion of the protease cleavage site. Amino acid sequences flanking the junctions of the different modules are given in the boxes. B) Proteins and peptides are colored as indicated on the bottom right of the panel.

Figure 2: Evaluation of DENV reporter constructs. A) Huh7 cells were transduced with lentiviruses encoding for the different DENV GFP-based reporter constructs 1-8 (Table 3) at an MOI of 5. Cells were fixed 72 hours post-transduction and subcellular distribution of GFP was analyzed by confocal microscopy. Scale bar: 100 μm. B) Quantification of images acquired as in (A). Percentage of cells showing nuclear or cytosolic GFP localization is shown. For each construct, more than 70 cells were counted. C) Huh7 cells were transduced as above for 24 h before being infected with DENV2 at an MOI of 5. Cells were fixed 48 hpi and NS3 was stained by immunofluorescence. Samples were analyzed by confocal microscopy. Magenta: DENV NS3 protein; green: reporter GFP signal. Scale bar: 100 μm. D) Quantification of images as in (C). Percent of cells positive for NS3 and cells positive for both nuclear GFP and NS3 signals was quantified. For each construct, more than 60 cells were counted. E) Cells expressing the reporter constructs 1-8 or an empty plasmid (empty) were infected with DENV2 (MOI = 5). 48 hpi cells were lysed and 10 μg of total protein for each sample was resolved by SDS-PAGE. NS3 and GFP were detected with a specific antibody. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) served as a loading control. Black arrowheads: uncleaved reporter. Red arrowheads: reporter cleavage products. F) Huh7-derived cells expressing reporter
construct 1 (Huh7-RC) were infected with DENV serotypes 1-4 at MOI 5. Cells were fixed 48 hpi and stained for double-stranded RNA (dsRNA) by IF. GFP and dsRNA signals were detected by fluorescence microscopy. For each serotype, more than 200 cells from at least 2 field of views in duplicate were screened. Scale bar: 50 µm.

Figure 3: Time-course experiments using the DENV reporter system in infection and transfection settings. A) Huh7 cells stably expressing the reporter construct 1 were infected with DENV2 WT, the reporter virus DENV-faR (MOI = 5) or left uninfected. Cells were fixed at the indicated time points post-infection (hpi) and signals of the reporter virus (magenta) and the GFP-based reporter construct (green) were detected with a wide-field fluorescence microscope. Scale bar: 100 µm. B) Quantification of images acquired as in (A). Percentage of cells positive for nuclear GFP signal (Nuclear-GFP), DENV-faR reporter virus (Nuclear-faR) and positive for both nuclear GFP and faR reporter signals (orange) was quantified. For each time point, more than 50 cells were analyzed. Values were normalized by setting the total number of cells counted using DAPI staining as 100%. C) Huh7 cells stably expressing the reporter construct 1 were infected with DENV2 (MOI = 5). Cells were fixed at the indicated hpi and viral double-stranded RNA (dsRNA) was stained by IF. dsRNA (magenta) and GFP (green) signals were detected by confocal microscopy. Scale bar: 50 µm. D) Quantification of cells using acquired images from the experiment shown in (C). Percentage of cells positive for nuclear GFP signal (green) and dsRNA (magenta) was quantified. For each time point, more than 250 cells were counted. Values were normalized by setting the total number of cells as determined by DAPI staining to 100%. E) Experimental set-up to monitor GFP-reporter activation in pIRO-D transfected live cells. F) Lunet-T7-RC cells stably expressing the T7 RNA...
polymerase and the reporter construct 1 were mock or pIRO-D transfected. Four hours after transfection, the medium was changed and live cell imaging was performed for 10 h using a confocal spinning disc microscope. Images of representative fields of view and the indicated time points are shown. Scale bar: 20 µm. See also supplemental movie S1.

Figure 4: Screening of SARS-CoV-2 reporter constructs. A) A549-ACE2 cells were transduced with lentiviruses encoding for the reporter constructs specified on the top left of each panel. Cells were fixed 32 hours post-transduction and GFP localization was analyzed using a wide-field fluorescence microscope. B) Quantification of images acquired as in (A). The percentage of nuclear or cytosolic GFP is shown (light green and gray, respectively). At least 290 cells were counted for each construct. C) Cells transduced as in (A) were infected with SARS-CoV-2 (MOI = 5) 16 hour post-transduction. Cells were fixed 16 hpi and dsRNA (magenta), and the GFP-based reporter construct (green) were detected by immunofluorescence using a wide-field fluorescence microscope. D) Quantification of images acquired as in (C). Percentage of infected cells positive for dsRNA only (magenta) or double positive for nuclear GFP signal and dsRNA (orange) is shown. For each construct, more than 85 cells were counted. Scale bars: 50 µm. E) A549-ACE2 cells stably expressing reporter construct 14 were infected with SARS-CoV-2 (MOI = 10). Cells were fixed at the indicated time post infection (top left corner) and SARS-CoV-2 N protein was stained by IF. N protein (magenta) and GFP (green) subcellular distribution were determined by confocal microscopy. Scale bar: 50 µm. F) Quantification of the acquired images as shown in (E). Percentage of cells with N protein staining (magenta) and nuclear
GFP signal (green) are shown for the different time points. For each time point more than 190 cells were analyzed.

Figure 5: Application of the SARS-CoV-2 reporter cell line for live cell imaging of viral infection and assessment of antiviral activity of Remdesivir. A) Experimental set-up to monitor GFP-reporter activation in SARS-CoV-2 infected cells. B) A549-ACE2-RC cells (clone C2) stably expressing the reporter construct 14 were infected with SARS-CoV-2 (MOI = 10). Two hours post infection (hpi) live cell imaging was performed for 18 h using a confocal spinning disc microscope. Images of representative fields of view and time points are displayed. Scale bar: 50 µm. C) A549-ACE2 and A549-ACE2-RC cells (clone C2) expressing the SARS-CoV-2 reporter construct 14 were incubated with Remdesivir (1.1 µM) or DMSO only and infected with SARS-CoV-2 (MOI = 5). After 16 h, cells were fixed and stained for N protein prior to imaging with a confocal spinning disc microscope. Scale bar: 50 µm. D) IC_{50} calculation of Remdesivir in reporter cell clone 2 infected with SARS-CoV-2 (MOI = 5). Percentage of inhibition was calculated by quantification of the number of N-positive cells and cells with nuclear GFP signal in duplicate wells for each compound concentration. Values were normalized by setting the average number of infected cells in the DMSO treated sample as 0 % inhibition.
TABLE 1: List of antibodies used in this study.

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Concentration</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse IgG1 anti-DENV NS3(^a)</td>
<td>1:1000</td>
<td>GeneTex</td>
</tr>
<tr>
<td>Mouse anti-GAPDH(^a)</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td>Rabbit anti-GFP(^a)</td>
<td>1:1000</td>
<td>Roche</td>
</tr>
<tr>
<td>Mouse IgG2a anti-dsRNA(^a)</td>
<td>1:400</td>
<td>Scicons</td>
</tr>
<tr>
<td>Mouse IgG1 anti-SARS-CoV N(^a)</td>
<td>1:500</td>
<td>Sino biologicals</td>
</tr>
<tr>
<td>Goat anti-mouse IgG-HRP(^b)</td>
<td>1:10000</td>
<td>Sigma</td>
</tr>
<tr>
<td>Goat anti-rabbit IgG-HRP(^b)</td>
<td>1:10000</td>
<td>Sigma</td>
</tr>
<tr>
<td>Alexa Fluor 568 donkey anti-mouse IgG(^b)</td>
<td>1:1000</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Alexa Fluor 568 donkey anti-rabbit IgG(^b)</td>
<td>1:1000</td>
<td>Thermo Fisher Scientific</td>
</tr>
</tbody>
</table>

\(^a\): primary antibody, \(^b\): secondary antibody; WB: western blot; IF: immunofluorescence.

TABLE 2: Sequences of oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Sequence (5'-3')(^1)</th>
<th>Orientation(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capsid</td>
<td>CGCGTAggagacgcagatcgccggcatgg</td>
<td>fwd</td>
</tr>
<tr>
<td>2</td>
<td>Capsid</td>
<td>gatccacagtgcggccagatcgctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>3</td>
<td>DV(_{opt})</td>
<td>CGCGTGaaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>4</td>
<td>DV(_{opt})</td>
<td>gatccctattgtcttttctttctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>5</td>
<td>NS2AB</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>6</td>
<td>NS2AB</td>
<td>gatctcaatgctggctctttctttctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>7</td>
<td>NS2B3</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>8</td>
<td>NS2B3</td>
<td>gatcccaatctcgccgccggttttctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>9</td>
<td>NS3hel</td>
<td>CGCGTGacaacaagaaaggggaggttctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>10</td>
<td>NS3hel</td>
<td>gatctctctctctctctctctctctctctctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>11</td>
<td>NS3prohel</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>12</td>
<td>NS3prohel</td>
<td>gatcccaatgtcgttcctttctttctctctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>13</td>
<td>panFlav</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>14</td>
<td>panFlav</td>
<td>gatccctctctctctctctctctctctctctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>15</td>
<td>ZV(_{opt})</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>16</td>
<td>ZV(_{opt})</td>
<td>gatctctctctctctctctctctctctctctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>17</td>
<td>nsp1/2</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>18</td>
<td>nsp1/2</td>
<td>gatcccaatgtcgttcctttctttctctctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>19</td>
<td>nsp2/3</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>20</td>
<td>nsp2/3</td>
<td>gatccctctctctctctctctctctctctctctctcA</td>
<td>rvs</td>
</tr>
<tr>
<td>21</td>
<td>nsp3/4</td>
<td>CGCGTGagaagaaaagaagaccagtaaagg</td>
<td>fwd</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Cleavage site sequence</td>
<td>Source</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Capsid</td>
<td>RRRR↓SAGM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DV<sub>opt</sub></td>
<td>GKKRR↓PVK</td>
<td>(39)</td>
</tr>
<tr>
<td>3</td>
<td>NS2AB</td>
<td>SKKR↓SWPL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NS2B3</td>
<td>KKQR↓AGVL</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NS3hel</td>
<td>AQRR↓RRIG</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NS3prohel</td>
<td>RKRR↓LTIM</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>panFlav</td>
<td>GLKR↓GGAK</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ZV<sub>opt</sub></td>
<td>KTGKR↓SGAL</td>
<td>(40)</td>
</tr>
</tbody>
</table>

¹Cleavage site is indicated with ↓.

²fwd: forward, rvs: reverse.

TABLE 3: List of DENV cleavage site sequences inserted into the reporter construct.

¹Capital letters indicate sequence non-complementary to the reverse primer.
TABLE 4: List of SARS-CoV cleavage site sequences inserted into the reporter construct.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Cleavage site sequence1</th>
<th>Protease2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nsp1/2</td>
<td>ELNGG↓AVTR</td>
<td>PL$_{pro}$</td>
</tr>
<tr>
<td>2</td>
<td>nsp2/3</td>
<td>RLKGG↓APIKG</td>
<td>PL$_{pro}$</td>
</tr>
<tr>
<td>3</td>
<td>nsp3/4</td>
<td>SLKGG↓KIVST</td>
<td>PL$_{pro}$</td>
</tr>
<tr>
<td>4</td>
<td>nsp4/5</td>
<td>SAVLQ↓SGFRK</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>5</td>
<td>nsp5/6</td>
<td>GVTFQ↓GKFKK</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>6</td>
<td>nsp6/7</td>
<td>VATVQ↓SKMSD</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>7</td>
<td>nsp7/8</td>
<td>RATLQ↓AIASE</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>8</td>
<td>nsp8/9</td>
<td>AVKLQ↓NNELS</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>9</td>
<td>nsp9/10</td>
<td>TVRLQ↓AGNAT</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>10</td>
<td>nsp10/RdRp</td>
<td>EPLMQ↓SADAS</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>11</td>
<td>RdRp/Hel</td>
<td>HTVLQ↓AVGAC</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>12</td>
<td>Hel/nsp14</td>
<td>VATLQ↓AENVT</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>13</td>
<td>nsp14/15</td>
<td>FTRLQ↓SLENV</td>
<td>3CL$_{pro}$</td>
</tr>
<tr>
<td>14</td>
<td>nsp15/16</td>
<td>LQASQ↓AWQPG</td>
<td>3CL$_{pro}$</td>
</tr>
</tbody>
</table>

1 Cleavage site is indicated with ↓; 2 PL$_{pro}$: Papain-like protease/nsp3, 3CL$_{pro}$: 3C-like protease/nsp5

10 January 2021 by guest
Figure 2
Figure 4
Figure 5