

















Mutational Analysis of Dengue Virus

FIG 11 STED super-resolution imaging of NS1 and dsRNA localization in infected cells. Huh-7.5 cells were infected
with DENV2-NS1-FLAG (MOI of ~0.1) and returned to culture for 48 h prior to fixation and indirect immunoflu-
orescent labeling using anti-FLAG (Alexa Fluor 488, green) and anti-dsRNA (Alexa Fluor 647, red) as described in
Materials and Methods. Samples were then mounted and imaged using a Leica TCS SP8 STED 3X microscope
system (Leica Microsystems) equipped with 592-, 660-, and 775-nm STED lasers using a 100X, NA 1.4 oil objective
lens at a 4X zoom. Confocal and STED images (in 2D STED mode) were acquired sequentially, as described in
Materials and Methods. Imaging data for both confocal imaging and STED imaging were deconvolved using
Huygens professional deconvolution software (v14.10; Scientific Volume Imaging), applying default settings. A
single optical section for confocal (A) and STED (B) channels is depicted. Scale bars are 5 um for main images and
500 nm for the inset images.

that likely represent replication complexes are relatively static, while weakly fluorescent
NS1 foci that may be involved in other aspects of the viral replication cycle can display
rapid long-range traffic. Further characterization of the DENV2-NS1-mScarlet recombi-
nant virus and development of adapted variants that closely mirror the replication,
infectious virus production, and NS1 secretion kinetics of wild-type DENV2 will enable
detailed analysis of NS1 localization, traffic, and interactions with relevant viral and host
cell factors during a productive infection.

DISCUSSION

Reverse-genetics studies have contributed greatly to our understanding of the DENV
replication cycle and the functions of the individual viral proteins and genetic elements.
However, these studies are highly laborious and are typically limited to analysis of
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FIG 12 Live cell imaging of mScarlet-tagged NS1 in infected cells. (A) Schematic diagram of the DENV2-NS1-mScarlet
construct. (B and C) Infectivity of DENV2-NS1-mScarlet compared to wild-type DENV-2. Huh-7.5 cells were transfected with
wild-type DENV-2 or DENV2-NS1-mScarlet RNA transcripts, and cell culture supernatants were collected at 24 to 120 h
posttransfection for determination of virus infectivity by focus-forming assay (FFA). (B) The immunofluorescent micrographs
show representative images from a FFA of cells infected with undiluted DENV-2 or DENV2-NS1-mScarlet supernatants collected
at 120 h posttransfection. Cells were labeled with anti-E antibody (green) and mScarlet-associated epifluorescence was also
visualized (red). Scale bars, 100 um. (C) Quantitation of infectivity by FFA. Data are means + the SD (n = 3). The dashed line
indicates the limit of detection. n.d., not detectable. (D and E) Live cell imaging of Huh-7.5 cells transfected with DENV2-NS1-
mScarlet transcripts (6 days posttransfection). (D) Detection of mScarlet autofluorescence in live Huh-7.5 cells after mock
transfection (“Mock”) or transfection DENV2-NS1-mScarlet RNA transcripts. Scale bars, 100 um. (E) Live cell imaging of
NS1-mScarlet localization and traffic. Insets depict examples of intensely fluorescent, relatively static NS1-mScarlet foci (cyan
arrows) and weakly fluorescent, highly motile NS1-mScarlet foci (cyan arrowheads). See also Movie S1 in the supplemental
material. Scale bars are 10 um for the main image and 5 um for the insets.
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discrete regions of individual viral proteins. Our study used random transposon mu-
tagenesis and high-throughput sequencing to provide a global overview of regions of
genetic flexibility within the DENV-2 genome and its encoded proteins. These data
provide a resource identifying genetically flexible regions that should arguably be
avoided in antiviral and vaccine development strategies, since these sites may be prone
to escape mutations with minimal impact on viral replicative fitness. Conversely, sites
that are broadly tolerant of insertions can be exploited in the generation of infectious
epitope- and reporter-tagged viruses. These viruses can be used in advanced applica-
tions such as high-resolution imaging and the interrogation of protein-protein inter-
actions.

Our transposon mutagenic profile of DENV2 genetic flexibility indicates that the
regions encoding prM, NS2A, and NS4A are highly intolerant of 15-nt insertions. For
NS2A, an eight-transmembrane protein with essential roles in viral RNA replication and
infectious virus production, our observations of intolerance to insertions are consistent
with recent alanine scanning mutagenesis studies that have revealed numerous mu-
tations, particularly in transmembrane regions, that are lethal to viral RNA replication or
infectious virus production (9, 10). Similarly, recent site-directed mutagenesis studies of
NS4A, which is essential for DENV-induced membrane rearrangements, have identified
numerous conserved residues that are required for its oligomerization and viral RNA
replication (33, 34). However, the lack of detection of replication-competent (pool 1)
viruses bearing insertions in the prM-encoding region was more surprising since this
region has no known involvement in viral RNA replication. Although it is possible that
the spread of infectious virus in pool 1 has masked the presence of replication-
competent prM mutants, it is also possible that insertion mutations within this region
have unexpected dominant-negative effects on viral replication. Further studies are
required to explore the apparent impact of prM mutations on DENV replication.

Overall, the regions encoding capsid, NS1 and the 3’ UTR were most tolerant of
15-nt insertions. As discussed above, capsid is the least conserved of all flavivirus
proteins, although its charge distribution is strongly conserved and structural features
are highly similar for capsid proteins of different flaviviruses (22). Accordingly, its
relatively high tolerance for 15-nt insertions is not unexpected, especially for insertions
that minimally alter its overall charge. In this context, none of the possible insertions
encode negatively charged peptides (C-G-R-I/M/T/N/K/S/R, L/M/V-R-P-H/Q, or X-A-A-A).
Similarly, region | of the 3’ UTR, where transposon insertions are most tolerated, is the
most variable of all DENV nucleotide sequences with various deletions and point
mutations identified in mosquito cell-adapted populations (35, 36). Although moder-
ately conserved across flavivirus species, the NS1 protein was remarkably tolerant of
15-nt insertions. Largely consistent with a recent mutagenesis study (8), we found that
the N-terminal B-roll, which contains a di-amino acid motif that may mediate interac-
tion with NS4B and ER membrane association (37), the N-terminal half of the Wing
domain and the C-terminal half of the B-ladder domain were highly sensitive to
insertions. In contrast, relatively broad regions surrounding the N-glycosylation sites in
the Wing (N130) and B-ladder (N207) domains and sites in close proximity to an
N-glycosylation site in the connector domain of other flaviviruses (N175) were highly
tolerant of insertions. Examination of the location of these sites in the crystal structure
of the NS1 dimer demonstrated that they were all solvent exposed and relatively
distant from the putative ER membrane-associating B-roll and greasy finger loop of the
B-ladder (18). Likewise, in the context of the secreted NS1 hexamer these regions of
genetic flexibility are distant from the lipoparticle interior and central lipid core that are
contained by six copies of the B-roll (18). Accordingly, we hypothesize that the regions
of high tolerance of insertions identified in our study are not required for functions of
NS1 in viral RNA replication or infectious virus production but, rather, may be required
for extracellular functions of NS1 in immune evasion and pathogenesis that are not
recapitulated in hepatoma cell culture. If so, such replication-competent and infectious
mutants that lack the immune evasion and vascular permeability functions of wild-type
NS1 may potentially be combined and exploited in future attenuated vaccine strate-
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gies. In this context, a live-attenuated Zika virus (ZIKV) strain with engineered mutations
to abolish NS1 glycosylation has very recently been shown to protect mice against
virus-induced placental damage and fetal demise (38). Alternatively or additionally,
regions of genetic flexibility in NST may be inherently flexible to skew humoral immune
responses toward these epitopes and away from regions that are susceptible to
function-neutralizing antibody responses and/or facilitate rapid viral adaptation in
alternative host species. Such roles have been suggested for genetically flexible regions
of influenza A virus NS1 protein in similar high-throughput insertional mutagenesis
studies (13).

Although our mutant library did not achieve saturation, it nonetheless enabled
generation of a comprehensive profile of regions in the DENV-2 genome that are
broadly tolerant of small (15-nt) insertions and nonessential for viral RNA replication
and infectious virus production in hepatoma cells. In this context, sequencing analysis
of the initial mutant DENV-2 RNA pool indicated that ~44% of all possible insertions
were present. However, additional transposon insertions frequently emerged in se-
quencing analysis of the replication-competent and infectious virus pools (pools 1 and
2, respectively), such that the percentage of all possible unique transposon insertions
in the DENV-2 genome in our study rose to ~49%. Future studies of this nature
involving near-saturation mutagenesis will help to resolve gaps in our mutational
profile of DENV-2 but will not likely alter the overall appearance of this profile.
Furthermore, additional approaches are required to better delineate regions that are
essential to viral RNA replication and those that are required uniquely for infectious
virus production. For example, blockade of infectious virus spread or parallel compar-
ison of genetic flexibility in an analogous subgenomic replicon could resolve regions in
the NS proteins that are required for replication versus those required for infectious
virus production.

As detailed above, another application of our mutational profile of DENV2 is in the
rational generation of epitope- and reporter-tagged viruses. Although the viability of
such viruses is predictably dependent on the size and structure of the insertion, our
mutational profile nonetheless provides a valuable resource for prediction of sites that
may tolerate insertions for advanced imaging, proteomics, and molecular applications.
For example, our APEX EM analysis indicates that NS1 is localized to both the luminal
membrane of VPs and in discrete clusters within VPs, in contrast to longstanding
models of replication complexes with respect to VPs, which depict NS1 as an exclusively
luminal viral protein. Furthermore, live cell imaging studies using mScarlet-tagged NS1
revealed that intensely labeled NS1 foci, which may reflect clusters of vesicle packets,
are relatively static. In contrast, small and less intensely labeled NS1 foci infrequently
display rapid bidirectional traffic. Although further investigations are required, includ-
ing confirmation that NS1 secretion is not perturbed by the mScarlet insertion, these
motile foci may reflect pools of NS1 that are involved in other functions of NS1 such as
virus assembly and as a secreted mediator of vascular damage and immune evasion.
Further studies using the NS1-tagged viruses developed in this study and additional
variations of these tagged viruses may help to further resolve the localization, traffic,
interactions and functions of this enigmatic multifunctional viral protein.

The transposon mutagenesis-coupled high-throughput sequencing approach ap-
plied to DENV-2 here also provides a basis for numerous additional extensions that
could rapidly improve our understanding of flavivirus- and host cell-specific functions
of viral proteins and genetic elements. For example, this approach could be readily
applied to other DENV serotypes, related flaviviruses or alternative cell types to unveil
flavivirus- and host cell type- and species-specific differences in the functions and
interactions of viral proteins. In this context, our analysis of cell type- and/or species-
specific determinants of genetic flexibility indicate that the diverse host cells that we
examined do not impart markedly different selective pressures that alter the relative
fitness of viable transposon mutants. Nevertheless, it is possible that continued passage
of the transposon mutant pool in these different cell types may further unveil regions
of the DENV-2 genome that are differentially susceptible to host cell-specific selective
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pressures. In regard to flavivirus-specific determinants of viral replicative fitness, Fulton
et al. very recently reported the impact of high-throughput transposon mutagenesis of
a cloned ZIKV genome on viral replication and infectious virus production (39). Largely
consistent with our findings for DENV-2, Fulton et al. demonstrated that NS1 and the
structural genes of ZIKV displayed the greatest overall flexibility, although key differ-
ences in the mutational maps of DENV-2 and ZIKV were apparent. For example, the
flexibility of prM appeared much higher for ZIKV compared to DENV-2 prM, while
regions surrounding N-glycosylation sites of DENV-2 NS1 displayed greater apparent
flexibility compared to the corresponding regions of ZIKV NS1. Further studies are
required to define the commonalities and differences in sites of genetic flexibility
between different flaviviruses and DENV serotypes and the impact of different host cell
types and species on this flexibility. In a further refinement of the transposon mutagen-
esis approach, several recent studies have combined random point mutagenesis with
NGS-based analysis of viral fitness to provide comprehensive profiles of the impact of
all possible amino acid substitutions in a viral protein with respect to analysis of
corresponding high-resolution protein structures (reviewed in reference 15). This ap-
proach could similarly be applied to great effect for DENV and related flaviviruses. In
summary, we propose that variations of the high-throughput mutagenesis-coupled
genetic profiling approach applied here, in conjunction with increased availability of
high-resolution viral protein structural information, may rapidly increase our under-
standing of the DENV replication cycle and expedite the development of urgently
required antiviral therapies and vaccines.

MATERIALS AND METHODS

Cell culture. Huh-7.5 cells (40) were generously provided by Charles M. Rice (Rockefeller University,
New York, NY) and were maintained as described previously (41). C6/36 cells, derived from Aedes
albopictus mosquitoes, were generously provided by Jillian M. Carr (Flinders University, Adelaide,
Australia) and were cultured at 28°C in a 5% CO, atmosphere in basal medium Eagle supplemented with
minimal essential medium nonessential amino acids, sodium pyruvate, GlutaMAX, penicillin-
streptomycin, and 10% fetal bovine serum (FBS). Vero cells were generously provided by Jillian M. Carr
(Flinders University, Adelaide, Australia) and were cultured as described previously (42). All cell culture
media and additives were purchased from Thermo Fisher Scientific.

Antibodies and chemicals. Mouse anti-NST monoclonal antibody (MAb) 4G4 and mouse anti-
dsRNA MAb 3G1 (IgM) were generously provided by Roy Hall (University of Queensland, Brisbane,
Australia) (43, 44). Mouse anti-capsid MAb 6F3.1 was kindly provided by John Aaskov (Queensland
University of Technology, Brisbane, Australia) (45). Mouse anti-B-actin MAb (AC-74) was purchased
from Sigma-Aldrich. Rabbit anti-FLAG MAb (D6W5B) was purchased from Cell Signaling Technolo-
gies. Alexa Fluor 488-, 555-, and 647-conjugated secondary antibodies and horseradish peroxidase-
conjugated secondary antibodies were purchased from Thermo Fisher Scientific. Nanchangmycin
was purchased from Selleck Chemicals and dissolved in dimethyl sulfoxide (DMSO) to 10 mM,
divided into aliquots, and stored at —80°C.

Viruses and plasmids. Plasmid pFK-DVs containing a full-length DENV-2 genome (strain 16681) was
generously provide by Ralf Bartenschlager (University of Heidelberg, Heidelberg, Germany) (46). Exact
details about reporter- and epitope-tagged virus generation are available upon request. To initiate viral
RNA replication, DENV plasmids were linearized with Xbal before use as the templates in in vitro
transcription reactions using an mMessage mMachine SP6 transcription kit (Thermo Fisher Scientific) and
transfection of viral RNA into Huh-7.5 cells by electroporation or transfection with DMRIE-C reagent
(Thermo Fisher Scientific), as described previously (41). Virus infectivity was measured by a focus-forming
assay. Briefly, Huh-7.5 cells were seeded at 2 X 10* cells/well into 96-well plates and returned to culture
overnight prior to inoculation with 40 wl/well of 10-fold serial dilutions of virus-containing cell culture
supernatants. After infection for 3 h at 37°C and 5% CO,, the cells were washed once with phosphate-
buffered saline (PBS) and returned to culture in fresh media for 72 h prior to fixation and immuno-
fluorescent labeling with anti-capsid antibody. Clusters (foci) of infected cells were then enumerated, and
virus infectivity was expressed as focus-forming units (FFU) per ml.

Generation of the DENV insertional mutant library. Plasmid pFK-DVs was mutagenized using the
mutation generation system (Thermo Fisher Scientific) according to the manufacturer's recommenda-
tions. Three independent in vitro transposon insertion reactions were performed using 500 ng of plasmid
per reaction, pooled, and transformed into XL-10 Gold Ultracompetent cells (Agilent Technologies).
Transformants were plated onto 15-cm plates with Luria-Bertani (LB) agar containing ampicillin and
kanamycin and grown for 18 h at 37°C. Bacterial colonies (~2.5 X 10°) were then scraped and pooled
before extraction of plasmid DNA using a NucleoBond Xtra Midi kit (Macherey-Nagel). Plasmid DNA was
then digested with Notl-HF (New England BioLabs) to remove the transposon body, gel extracted, and
religated using T4 DNA ligase (Promega). Approximately 150 ng of ligated plasmid was then transformed
into XL-10 Gold cells, as described above, and the cells were plated onto LB agar plates containing
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ampicillin and cultured for 18 h at 37°C. Plasmid DNA was extracted from pooled colonies (~2.5 X 105
colonies), as described above, and verified by diagnostic restriction digest (data not shown).

Mutant virus library passage and analysis of transposon insertion frequency by RT-PCR and
Illlumina sequencing. Huh-7.5 cells were electroporated with in vitro-transcribed transposon mutant
DENV library RNA. For this, 13 electroporations were performed with 4 X 10¢ cells and 10 ug of RNA per
electroporation using 0.4-cm cuvettes and a Gene Pulser Xcell electroporation system (Bio-Rad) to deliver
a single pulse (270 V, 100 (), 970 uF). Cells were then resuspended in complete media, pooled, and
plated into 13 75-cm? flasks and returned to culture. Virus replication and spread was monitored in
parallel cultures by immunofluorescence and at 6 days postelectroporation, when ~50% of cells were
infected, cell culture supernatants were collected, cleared by centrifugation, and diluted in an equal
volume of fresh medium before they were applied to naive target cells, seeded the previous day into 13
75-cm? flasks at 1.6 X 10¢ cells per flask. Total RNA was isolated from electroporated cell monolayers (6
days postelectroporation) and infected cell monolayers (2 days postinfection) using TRIzol (Thermo Fisher
Scientific) according to the manufacturer’s instructions. This cellular RNA (pool 1 and pool 2) and the
“input” RNA used for electroporation (pool 0) were reverse transcribed into cDNA using Superscript IlI
(Thermo Fisher Scientific) and the oligonucleotide DV2NGS6R (see below) according to the manufactur-
er's instructions. Alternatively, the infectious virus-containing supernatant from mutant library-
electroporated Huh-7.5 cells (see above) was diluted (1:3) in appropriate media and applied to naive
Huh-7.5, Vero, or C6/36 cells that had been seeded the previous day into 75-cm? flasks (three flasks per
cell type, with 1.2 X 106 cells/flask). As above, at 2 days postinfection the total RNA was extracted from
these cells and used to prepare cDNA. In both instances, this cDNA then served as the template for PCR
to amplify the entire genome in six overlapping fragments using Q5 high-fidelity DNA polymerase (New
England BioLabs) and the six following oligonucleotide pairs: DV2NGS1F (5'-AGTTGTTAGTCTACGTGGA
CCG-3’) and DV2NGS1R (5'-CGAATGGAGGTTCTGCTTCTATGT-3’), DV2NGS2F (5'-GCAGAAACACAACATG
GAACAATAG-3’) and DV2NGS2R (5'-CCTAAGGCTAACGCATCAGTC-3’), DV2NGS3F (5'-TGTCCTTTAGAGAC
CTGGGAAG-3’) and DV2NGS3R (5'-ATGTCAGTTGTAACCACGAAGTCC-3’), DV2NGS4F (5'-CAGCAAGTATA
GCAGCTAGAGGA-3’) and NGS4R (5'-TTTCCCTTCTGGTGTGACCATG-3"), DV2NGS5F (5'-CTCAAGTATTGAT
GATGAGGACTACATG-3’) and DV2NGS5R (5'-ACTTGTGTCCAATCATTCCATCC-3"), and DV2NGS6F (5'-CCG
CAGGATGGGATACAAGA-3") and DV2NGS6R (5'-AGAACCTGTTGATTCAACAGCAC-3'). PCR products were
then gel-extracted, quantified using a Qubit dsDNA HS assay kit (Thermo Fisher Scientific) and combined
in equimolar amounts for each pool. Samples were then processed using a Nextera XT library preparation
kit (Illumina) and sequenced using a NextSeq500 (lllumina) and 150-nt paired-end reads. For analysis,
trimmed sequencing reads were filtered for sequences containing the transposon-derived insertion
sequence (TGCGGCCGCA), and the transposon sequence was annotated and mapped against the DENV-2
reference sequence (GenBank accession number NC_001474 with minor modifications, as described
previously [46]) using Bowtie 2 (47). The locations of the annotated transposon insertions were then
identified from the alignments and counted using Geneious version 8 software (48). Original sequencing
files are accessible from the NCBI Sequence Reads Archive under the series record PRINA400339.

Immunofluorescence microscopy, immunoblotting, and luciferase assays. Immunofluorescent
labeling was performed as described previously (41). Widefield fluorescence microscopy for infectivity
assays was performed using a Nikon TiE inverted fluorescence microscope system. Confocal fluorescence
microscopy was performed using a Zeiss LSM 700 confocal microscope system equipped with a 60X NA
1.4 water-immersion objective lens. Images were processed using NIS Elements AR v.3.22 (Nikon) and
Photoshop 6.0 (Adobe) software. For STED super-resolution imaging, Huh-7.5 cells were cultured
overnight on coverslips (18-mm round no. 1.5 glass) that were precoated with 0.2% gelatin. Cells were
then infected with DENV2-NS1-FLAG (MOI of ~0.1) and returned to culture for 48 h prior to fixation
(ice-cold methanol-acetone [1:1], 5 min), washing, blocking (5% BSA in PBS for 30 min at room
temperature), and labeling for 1 h at room temperature with rabbit anti-FLAG MAb (D6W5B [Cell
Signaling Technologies], diluted 1:200) and anti-dsRNA (MAb 3G1.1 hybridoma supernatant, diluted 1:5)
diluted in PBS-1% BSA. Samples were then washed twice with PBS before incubation for 1 h at 4°C with
Alexa Fluor 488-conjugated anti-rabbit IgG and Alexa Fluor 647-conjugated anti-mouse IgG (cross-
reactive to IgM) antibodies (Thermo Fisher Scientific) diluted 1:200 in 1% BSA-PBS. Samples were then
washed three times and mounted with ProLong Gold (Thermo Fisher Scientific). Samples were then
imaged using a Leica TCS SP8 STED 3X microscope system (Leica Microsystems) equipped with 592-,
660-, and 775-nm STED lasers, using a 100X, NA 1.4 oil objective lens at 4X zoom. For STED, Alexa Fluor
488 labels were excited with a 488-nm wavelength of a pulsed white light (WL) laser (80 MHz) and
depleted with a CW 592 STED laser with a maximum power of 1,500 mW (typically operating at ~30%).
Similarly, for STED Alexa Fluor 647 labels were excited with a 647-nm wavelength of a WL laser and
depleted with a CW 775 nm STED laser with a maximum power of 1,500 mW (typically operating at
~50%). Images were acquired in two-dimensional (2D) STED mode with settings optimized for
maximum gains in lateral resolution. Time gates were 0.5 to 6 ns. A total of four z-sections were
acquired (0.142-um z-steps) for both confocal and STED channels and a line averaging of 7 was
applied. Deconvolution of confocal and STED data (see Fig. 9) was performed using Huygens
Professional Deconvolution software (v14.10; Scientific Volume Imaging) and default settings.
Immunoblotting was performed as described previously (49). Where indicated, precleared superna-
tants were treated with PNGase F (New England BiolLabs) for 4 h at 37°C under nonreducing
conditions in accordance with the manufacturer’s instructions. Western blots were imaged using a
ChemiDoc MP Imaging System (Bio-Rad) and, where applicable, the band intensities were quantified
using Image Lab software (v5.2.1; Bio-Rad). Assays of NanoLuc (NLuc) activity were performed as
described previously (50). In brief, Huh-7.5 cells were seeded into 96-well plates at 2 X 10* cells per
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well and cultured overnight prior to infection with DENV2-NS1-NLuc at the indicated MOI, with or
without pretreatment with nanchangmycin for 1 h at the indicated concentration (or vehicle control:
DMSO at 0.1%). Four hours later, the cells were washed and returned to culture for 48 h prior to the
collection of supernatants, the washing of monolayers with PBS, and lysis using passive lysis buffer
(Promega). Supernatant samples were cleared by centrifugation and mixed 1:1 with 2X passive lysis
buffer before measurement of the NLuc activity in cell lysates and supernatants using a Nano-Glo
luciferase assay system (Promega) and a GloMax 20/20 luminometer (Promega).

Live cell imaging. Live cell imaging was performed as described previously (51). Briefly, DENV2-
NS1-mScarlet RNA-transfected Huh-7.5 cells at 4 days posttransfection were seeded onto 0.2% gelatin-
coated cover glass-bottom dishes (MatTek) and cultured for 2 days in phenol red-free Dulbecco modified
Eagle medium containing 10% FBS. Alternatively, Huh-7.5 cells were seeded into these dishes at 1.5 X
10° cells per dish, infected the following day at an MOI of ~0.01, and returned to culture for 3 days.
Imaging was performed at 37°C using a Nikon TiE inverted fluorescence microscope system equipped
with a heated stage (Okolab), a Plan Apochromat 60X NA 1.4 oil immersion objective lens (Nikon),
BrightLine single-band filter sets (DAPI-5060C-NTE-ZERO, FITC-3540C-NTE-ZERO, and TxRed-4040C-NTE-
ZERO; Semrock), a Perfect Focus System (Nikon), and a monochrome 12-bit cooled charge-coupled
device camera with a maximum resolution of 1,280 X 1,024 (DS-Qi1; Nikon). lllumination was provided
by an Intensilight C-HGFIE precentered fiber illuminator mercury light source (Nikon). Images were
acquired every 1.5 s for 5 min (see Movie S1 in the supplemental material) or every 10 s for 50 min (see
Movie S2 in the supplemental material). Image processing was performed using NIS Elements v 3.22
software (Nikon), as described in the figure legends and supplementary movie legends.

APEX electron microscopy. Huh-7.5 cells were seeded into 150-mm cell culture dishes at 1.5 X 106
cells per dish and cultured overnight before mock infection or infection with DENV2 or DENV2-NS1-
APEX2 viruses (MOI of ~0.01), prepared as cell culture supernatants collected from electroporated
Huh-7.5 cells. At 4 days postinfection, the cells were fixed in EM fixative (1.25% glutaraldehyde, 4%
paraformaldehyde, and 4% sucrose in PBS [pH 7.2]) for 30 min at 4°C, washed, stained with DAB/H,0.,
and processed for electron microscopy as described previously (41). Samples were imaged using a Tecnai
G2 Spirit transmission electron microscope (FEI) operating at 100 kV.

Molecular graphics and sequence alignments. Molecular graphics were performed on the DENV-2
NS1 crystal structure (Protein Data Bank [PDB] accession number 406B) using PyMOL version 1.8
molecular visualization system (Schrodinger). Sequence alignments of DENV polyprotein sequences were
performed using JalView Desktop software with the ClustalW scoring algorithm. Flavivirus isolates with
the following UniProt KB/Swiss-Prot accession numbers were compared: DENV-1, P27909 (Brazil/97-11/
1997); DENV-2, P29991 (Thailand/16681-PDK53); DENV-3, Q6YMS3 (Martinique/1243/1999); DENV-4
Q2YHFO (Thailand/0348/1991); West Nile virus P06935; Yellow Fever virus, Q6J3P1 (lvory Coast/1999); and
Japanese encephalitis virus P27395 (SA-14).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JVI
.01455-17.

SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.

SUPPLEMENTAL FILE 2, XLSX file, 1.3 MB.
SUPPLEMENTAL FILE 3, MP4 file, 17.1 MB.
SUPPLEMENTAL FILE 4, MP4 file, 16.7 MB.
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