


















cross-reactivity was limited to A/Sydney/5/1997 (H3N2) and A/Nanchang/933/1995
(H3N2). Our results suggest that contemporary seasonal influenza viruses do not
cross-react with the novel H3N2 canine influenza viruses. Of course, repeat exposures
to antigenically drifted H3N2 viruses may broaden the serological response in humans,
and human serological studies are required to confirm herd immunity to GD06-like
viruses.

To assess the potential risk of reassortment, we attempted to generate all GD06 �

CA09 reassortants with the HA gene of GD06. We were able to successfully generate 51
(40%) of 127 reassortants, suggesting that the gene segments from GD06 and CA09
have moderate genomic compatibility. Consistent with this finding, RNP luciferase
reporter assays suggested that specific constellations of GD06 and CA09 genes may
enhance the level of viral replication compared to that of the wild-type parental viruses.
All 4 RNP complex constellations that showed enhanced luciferase activity contained
the NP gene segment from GD06 and the PB1 gene segment from CA09.

All 19 high-growth reassortant viruses contained the PB1 gene segment from CA09,
and most (84%) also contained the CA09 PB2 gene segment. However, high in vitro
growth did not uniformly translate to efficient replication in mice. Others have de-
scribed the important role of the PA gene segment in maintaining the stability of CA09
(45). However, our RNP data and our reassortants with high-growth phenotypes
showed fairly equal representation of the PA gene segment from GD06 and CA09.

While not all viruses replicated robustly in mice, all but three inoculated mice
seroconverted at 14 dpi, suggesting some level of growth. This finding is in contrast to
that of a previous study that showed that a CIV-H3N2 isolate was not detected in the
respiratory tract of mice after experimental infection and animals remained seronega-
tive (46). The discrepancies in these data may lie in minor variations in the represen-
tative viruses used [the previous researchers studied A/Canine/Korea/01/2007 (H3N2)].
Most of the reassortants that replicated efficiently in mouse lungs contained more gene
segments from CA09 than from GD06. The maximum replication in mouse lungs by a

FIG 6 Histopathology of ferret nasal turbinate, tracheal, and lung tissues. Ferrets were inoculated with 106 TCID50 of GD06 virus, reassortant 109, or PBS as a
control. At 5 dpi they were euthanized and nasal turbinate, tracheal, and lung tissues were collected. One GD06-infected ferret had moderate turbinate
pathology (rhinitis with moderate lamina proprial lymphoplasmacellular infiltrates and a loss of cilia or replacement of the respiratory mucosal epithelium by
stratified squamous epithelium), whereas the other had minimal pathology (minimal lamina proprial lymphoplasmacellular infiltrates). Both reassortant
109-infected ferrets had moderate to severe turbinate pathology, including lymphoplasmacellular rhinitis and a loss of cilia or replacement of the normal
mucosal epithelium by stratified squamous epithelium. No significant lesions were seen in the trachea of any of the ferrets. There was mild lung pathology,
including peribronchitis and peribronchiolitis, in one ferret infected with reassortant 109.
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reassortant was achieved by reassortant 109, which contained only the HA and NP
genes from GD06. Overall, there was minimal weight loss in most of the infected mice.
The introduction of CA09 gene segments may account for the �5% body weight loss
observed in mice inoculated with reassortants 111, 109, and 55. All three of these
reassortants consisted of an identical RNA polymerase complex of PB2 of CA09, PB1 of
CA09, and PA of CA09. However, other reassortants with the same RNA polymerase
complex did not cause a weight loss of �5%, demonstrating that other factors are also
important.

Compared to the replication of GD06, reassortant 109 showed enhanced replication
in in vitro and in vivo experiments and maintained at least the same level of contact
transmissibility between ferrets. In another study, CIV-H3N2 replicated efficiently in the
upper and lower respiratory tracts of ferrets, and the animals exhibited clinical signs of
disease, such as lethargy, sneezing, unkempt fur, and a loss of appetite (47). In our
study, the ferrets showed no clinical signs of illness, possibly related to the lower dose
of virus used. In our hands, neither GD06 nor reassortant 109 was detected in ferret
lung tissues, although mild lung pathology was seen in one ferret infected with
reassortant 109. Both viruses effectively replicated in nasal turbinate tissues, and
reassortant 109 also replicated in tracheal tissues.

In our study, ferrets infected with GD06 or reassortant 109 at 106 TCID50 shed virus
at titers of 4.032 to 6.199 log10 TCID50/ml at 3 or 5 dpi. These titers are higher than
those reported previously in ferrets inoculated with A/canine/Korea/01/2007 (H3N2) at
103.5 50% egg infective doses (EID50) (46). In another study, ferrets with direct exposure
to inoculated ferrets shed detectable virus at a mean titer of 2.5 to 2.8 log10 EID50/ml
from 10 to 11 dpi, and 2 of 3 exposed ferrets seroconverted (42). In our study, naive
direct-exposure ferrets shed virus at titers of 0.699 to 5.366 log10 TCID50/ml at 3, 5, and
7 dpi. Furthermore, all ferrets in direct contact with those inoculated with reassortant
109 seroconverted at 21 dpi. These findings suggest that, in ferrets, CIV-H3N2 and
reassortant 109 achieved a relatively high replication efficiency and the ability to be
transmitted via direct contact.

In conclusion, reassortants between GD06 and CA09 showed increased viral titers in
the lungs of mice and caused more pathological lesions in ferrets than wild-type strain
GD06 did. These reassortants warrant the use of enhanced surveillance for CIV in the
canine population, especially surveillance for reassortant viruses with zoonotic poten-
tial.

MATERIALS AND METHODS
Cells. Madin-Darby canine kidney (MDCK) cells (ATCC CCL-34) and human embryonic kidney epi-

thelial (293T) cells (ATCC CRL-11268) were maintained in Dulbecco’s modified Eagle medium (Gibco/BRL)
supplemented with 10% fetal bovine serum (Atlanta Biologicals) and penicillin-streptomycin (100 U/ml
and 100 �g/ml, respectively; Gibco/BRL) at 37°C with 5% CO2. Human lung adenocarcinoma epithelial
(A549) cells (ATCC CCL-185) were maintained in Kaighn’s modification of Ham’s F-12 (F-12K) medium
(ATCC) supplemented with 10% fetal bovine serum and penicillin-streptomycin (100 U/ml and 100
�g/ml, respectively) at 37°C with 5% CO2.

Viruses. We propagated CIV strain A/canine/Guangdong/1/2006 (H3N2), here referred to as GD06,
the first H3N2 isolate identified from dogs in southern China (19), in 9- to 11-day-old specific-pathogen-
free (SPF) embryonated chicken eggs (Sunrise Farms) and MDCK cells. The pandemic H1N1 strain used
for experiments was A/California/4/2009 (H1N1), here referred to as CA09. We also used A/Puerto
Rico/8/1934 (H1N1) (PR8).

Mice and ferrets. All animal experiments were performed in Mississippi State University (MSU)
AAALAC-accredited facilities and in compliance with MSU Institutional Animal Care and Use Committee
(IACUC) and Institutional Biosafety Committee (IBC) protocols. We obtained 4-month-old female SPF
ferrets from Triple F Farms and 6- to 8-week-old female SPF BALB/c mice from Harlan Laboratories. All
animals were maintained in individually ventilated cages in compatible groups (mice) or in pairs that
were individually separated by a partition (ferrets). All ferrets were tested and determined to be free from
influenza viral antibodies before initiation of the study. Water and food were available ad libitum.

Ferret antiserum. We generated ferret antiserum against temporally representative human H3N2
IAVs from 1979 to 2015 as previously described (48) for use in evaluating the antigenic similarity between
CIV-H3N2 and contemporary human H3N2 IAVs. Ferret antiserum was raised against A/Bangkok/1/1979
(H3N2), A/Philippines/2/82 (H3N2), A/Caen/1/1984 (H3N2), A/Mississippi/1/1985 (H3N2), A/Leningrad/360/
1986 (H3N2), A/Sichuan/02/1987 (H3N2), A/Sichuan/60/1989 (H3N2), A/Ann Arbor/03/1993 (H3N2), A/Johan-
nesburg/33/1994 (H3N2), A/Nanchang/933/1995 (H3N2), A/Sydney/5/1997 (H3N2), A/Wisconsin/67/2005
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(H3N2), A/Brisbane/10/2007 (H3N2), A/Perth/16/2009 (H3N2), A/Victoria/361/2011 (H3N2), A/Texas/50/2012
(H3N2), A/Switzerland/9715293/2013 (H3N2), A/Utah/07/2013 (H3N2), A/Mississippi/17/2013 (H3N2), A/Costa
Rica/4700/2013 (H3N2), A/Palau/6759/2014 (H3N2), A/Hong Kong/4801/2014 (H3N2), A/Fiji/2/2015 (H3N2),
A/Brisbane/82/2015 (H3N2), and A/Victoria/503/2015 (H3N2). We also generated ferret antiserum against
CIV-H3N8, specifically, A/canine/Iowa/13628/2005 (H3N8).

RNA isolation, PCR, cloning, and plasmid extraction. GD06 viral RNA was isolated using an RNeasy
minikit (Qiagen) and amplified using SuperScript one-step reverse transcription-PCR with Platinum Taq
DNA polymerase (Invitrogen), and amplicons were cloned into a dual-promoter plasmid vector,
pHW2000, as previously described (49, 50). All plasmids were amplified using a GeneJET plasmid
midiprep kit (Thermo Fisher Scientific) according to the manufacturer’s protocol, and the sequences were
confirmed via Sanger sequencing at the Life Sciences Core Laboratories Center (Cornell University, Ithaca,
NY, USA).

Generation of reassortant viruses using reverse genetics. We used reverse genetics to generate
reassortant viruses with all possible genomic constellations between GD06 and CA09, with the HA gene
originating only from wild-type strain GD06 (i.e., 27 	 1, or 127, reassortants, all of which had the HA
gene from GD06). We generated the reassortant viruses using transfection and reverse genetics as
previously described (51). In brief, 1 �g of each of the eight plasmids expressing the specified genomic
constellation was added to Opti-MEM medium (Gibco/BRL) and 16 �l of TransIT-LT1 transfection reagent
(Mirus Bio) and mixed gently; the mixture was incubated at room temperature for 45 min. Opti-MEM
medium (800 �l) was then added to the mixture, which was then transferred to cocultured MDCK and
293T cells. The transfection medium was removed from the cells 12 h after transfection and replaced with
Opti-MEM medium supplemented with tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-treated
trypsin from bovine pancreas (TPCK-trypsin; Sigma-Aldrich). At 3 days after transfection, the supernatant
was seeded once into MDCK cells. Approximately 72 h later, 50 �l of passage 1 virus was used in a
hemagglutination assay with 0.5% turkey erythrocytes. Of the 127 reassortants, 51 showed hemagglu-
tination and were collected and stored at 	80°C for additional characterization. All others that we failed
to generate were regenerated from the beginning, i.e., transfection. However, no additional reassortants
were generated. Titers for the 51 reassortant viruses were determined by using endpoint titration in
MDCK cells, and the TCID50 was calculated by using the Reed-Muench method (52). The limit of virus
detection was 100.699 TCID50/ml. All viruses with a predetermined cutoff of �106 TCID50/ml were selected
for further characterization of their pathogenesis in mice. Illumina sequencing confirmed the full gene
segments of each virus, and genomic sequencing and assembly are described elsewhere (53).

Growth curve replication kinetics in vitro. To determine virus replication kinetics in vitro, we
quantified and infected MDCK and A549 cells at a multiplicity of infection (MOI) of 0.001. After incubation
at 37°C for 1 h, cells were washed twice with phosphate-buffered saline (PBS) and incubated in Opti-MEM
medium containing TPCK-trypsin at 1 �g/ml (MDCK cells) or 0.5 �g/ml (A549 cells) at 37°C with 5% CO2.
Supernatants were collected at 12, 24, 36, 48, and 72 h postinoculation and stored at 	80°C. The
supernatants were titrated in MDCK cells by TCID50, and TCID50 were calculated by using the Reed-
Muench method (52). Titers are shown as the means for the three replicate infections. The limit of virus
detection was 100.699 TCID50/ml.

Hemagglutination and HI assays. To detect the virus titer and to determine seroconversion, we
performed the hemagglutination assay and hemagglutination inhibition (HI) assay using 0.5% turkey
erythrocytes as described elsewhere (41). All HI assays were performed in three replicates.

Luciferase assay to quantify ribonucleoprotein complex activity in vitro. A total of 4 � 104 293T
cells were transfected with polymerase PB2, PB1, PA, and NP protein expression plasmids (40 ng) in
Corning 96-well plates. Forty nanograms of plasmid phPOLI-RLUC expressing Renilla luciferase and 4 ng
of pGL4.13 (luc2/simian virus 40) expressing firefly luciferase (internal control) (Promega, Madison, WI)
were also cotransfected in 293T cells. Luciferase activities in lysates from cells harvested at 48 h after
transfection were measured using a dual-luciferase reporter assay system (Promega, Madison, WI) per the
manufacturer’s instruction. We measured the Renilla and firefly luciferase activities for the 16 possible
combinations of plasmids expressing the RNP complexes derived from CA09 and GD06, determining the
replication efficiency of each combination. The ratio of Renilla/firefly luciferase activities for each RNP
combination was normalized to the ratio of the Renilla/firefly luciferase activity for the internal control.

Statistical analysis of luciferase assay. Luciferase data were expressed as means � standard
deviations from three independent experiments. The differences in means were tested using a one-way
ANOVA with post hoc Tukey’s multiple-comparison test using GraphPad Prism (version 7.02) software
(GraphPad Software, Inc., La Jolla, CA). P values of �0.05 were considered statistically significant.

Pathogenesis in mice. We characterized the pathogenesis of the reassortant viruses by inoculating
mice with 22 viruses, including 19 reassortants between GD06 and CA09 with the high-growth pheno-
type (Table 1), one GD06 � PR8 reassortant with the HA and NA gene segments derived from GD06, and
the wild-type strains GD06 and CA09. Briefly, we anesthetized 22 groups of mice (n � 8 mice per group)
with isoflurane and then intranasally inoculated them with 50 �l of an IAV at a viral load of 106 TCID50/ml
or with 50 �l of sterile PBS. All mice were weighed daily, and at 4 days postinoculation (dpi), we
humanely euthanized three mice in each group and collected lung tissues under sterile conditions. The
lung tissues were stored at 	80°C until virus titers could be obtained. We used a pestle (Research
Products International) and silicon dioxide (Acros Organics/Thermo Fisher Scientific) to homogenize the
lung tissues in 500 �l of sterile PBS and then titrated the supernatants in MDCK cells. The TCID50 was
determined by using the Reed-Muench method (52). The limit of virus detection was 100.699 TCID50/ml.
The remaining five mice in each group were monitored for weight loss until 14 dpi and then humanely
euthanized. Serum was collected from the mice to determine seroconversion. The reassortant virus with

Sun et al. Journal of Virology

November 2017 Volume 91 Issue 21 e00637-17 jvi.asm.org 12

 on January 26, 2021 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org
http://jvi.asm.org/


the highest lung titer (i.e., reassortant 109) was selected for a transmission and pathogenesis study in
ferrets.

Statistical analysis of mouse viral lung titers. Mean viral lung titers were tested using a one-way
ANOVA with post hoc Tukey’s multiple-comparison test using GraphPad Prism (version 7.02) software
(GraphPad Software, Inc., La Jolla, CA). P values of �0.05 were considered statistically significant.

Transmission and pathogenesis in ferrets. To determine the transmissibility and pathogenesis of
GD06 and reassortant 109 in ferrets, 4-month-old female ferrets were purchased from Triple F Farms and
given 7 days to acclimatize after arrival. Each ferret was weighed, and its temperature was monitored
throughout the experiment using implanted transponders (Bio Medic Data Systems, Inc.). Before the
experiments were conducted, all 24 ferrets tested seronegative for antibodies against GD06, CA09,
A/Perth/16/2009 (H3N2), A/Victoria/361/2011 (H3N2), and A/Minnesota/307875/2012 (H3N2) influenza
viruses. Each experimental group included three ferrets that were lightly anesthetized with isoflurane
and inoculated intranasally with either GD06 or reassortant 109 (viral load, 106 TCID50 in a 1-ml volume)
and three ferrets for evaluation of susceptibility to exposure that were not anesthetized or inoculated
(exposure ferrets). The exposure ferrets were exposed to the virus through either ferret-to-ferret direct
contact or indirect (i.e., aerosol) contact with the virus-inoculated ferret.

In each of the three direct-contact transmission groups, one virus-inoculated ferret and one exposure
ferret were housed as a pair in the same cage without a partition. In each of the three aerosol-
transmission groups, one virus-inoculated ferret and one exposure ferret were housed as a pair in the
same cage but were separated by a 1-cm-thick, double-layered steel partition with 5-mm perforations
(Allentown, Inc.). In all cages, the exposure ferret was placed into the cage 1 day after the virus-
inoculated ferret was introduced into the cage. The nonrecirculating airflow in the cage went from the
exposure ferret through the partition to the virus-inoculated ferret and exhausted to room air through
HEPA filtration.

Ferrets were lightly anesthetized and induced to sneeze in order to collect nasal wash fluids at 3, 5,
7, and 10 dpi to determine viral shedding patterns. Briefly, ferrets were induced to sneeze by inoculating
1 ml of sterile PBS and gently tickling the nasal cavity with a sterile cotton swab. Before performing nasal
washes, we measured each ferret’s body temperature and weight. We monitored clinical signs daily. The
virus titers in the samples were determined by titration in MDCK cells. To evaluate the replication
efficiency and the pathology of the viruses in the ferret respiratory tract, we euthanized two of the three
virus-inoculated ferrets in each direct-contact-transmission group at 5 dpi. The turbinates, trachea,
bronchi, and lungs were collected, and virus titers were determined (limit of detection, 100.699 TCID50/ml).
For the remainder of the ferrets, serum was collected at 14 dpi, immediately before they were
euthanized.

Ethics statement. Experiments involving mice and ferrets were conducted in compliance with
protocols approved by the Institutional Biosafety Committee and the Institutional Animal Care and Use
Committee of Mississippi State University (protocols IBC#011-12 and IACUC#13-022) and under the
regulations of the Animal Welfare Act (AWA). Viruses were propagated in 9- to 11-day-old SPF embry-
onated chicken eggs (Sunrise Farms). Laboratory experiments were conducted under biosafety level 2
conditions, with investigators wearing appropriate personal protective equipment. All reassortant viruses
were generated before the U.S. Government pause on gain-of-function research.
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Erratum for Sun et al., “Zoonotic Risk, Pathogenesis, and
Transmission of Avian-Origin H3N2 Canine Influenza Virus”
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Volume 91, no. 21, e00637-17, 2017, https://doi.org/10.1128/JVI.00637-17. Page 3,
Table 1, footnote a, line 3: The color coding is incorrectly explained. “brown” should
read “purple,” and “purple” should read “brown.”

Page 4, Table 2, footnote a, line 3: The color coding is incorrectly explained. “brown”
should read “purple,” and “purple” should read “brown.”

Page 8, Fig. 4: The x-axis labels shown at the bottom of the figure are incorrect. Both
instances of “Day 1,” “Day 3,” “Day 5,” and “Day 7” should read “Day 3,” “Day 5,” “Day
7,” and “Day 10,” respectively.
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