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FIG 5 Maximum-likelihood phylogenetic tree of the amino acid sequences of the putative S proteins of WESV and other coronaviruses. The asterisks indicate
well-supported nodes (>70% bootstrap support). The scale bars indicate the numbers of amino acid substitutions per site. The virus genomes used are the same

as those shown in Fig. 3.

Although readily apparent in the amino acid phylogenies, the recombination event
between WESV and other (and/or unknown) coronaviruses did not receive significant
statistical support in the RDP analysis and similarity plot analysis (Fig. 6C), likely because
these nucleotide sequences are highly divergent (for example, the S gene of WESVs
differs from those of alphacoronaviruses by 26.6 to 62.6% at the nucleotide level).
Similar suggestions have been made with respect to the recombination involving
Rhinolophus bat coronavirus HKU2 and Lucheng Rn rat coronavirus (18, 32).

Numbers of synonymous and nonsynonymous substitutions across the WESV
genome. An analysis of the numbers of synonymous (dS) and nonsynonymous (dN)
substitutions per site (dN/dS ratio) in the genome sequences of WESV and other
alphacoronaviruses revealed relatively low dN/dS values, reflecting the predominance
of purifying selection (Table 4). The exception was NS7, in which the far higher
supported ratio for WESV (0.514) was indicative of a markedly different selection
pressure.

DISCUSSION

We describe a novel coronavirus, denoted Wénchéng shrew coronavirus (WESV), in
shrews in four counties of Jiangxi and Zhejiang Provinces, China. WESV was highly
divergent from other alphacoronaviruses, exhibiting =71.1% amino acid similarity to
any known members of the genus Alphacoronavirus in the coronavirus-wide conserved
domains in the replicase polyprotein pplab and less than 61.3% amino acid similarity
to the other three coronavirus genera. The Coronaviridae Study Group of the Interna-
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FIG 6 Recombination analysis of the WESV genome. (A) Sequence similarity plot revealing two recombination breakpoints with their
locations shown by the red numbers on the x axis. The plot shows genome scale similarity comparisons of the Wénchéng-578
sequence (query) against Wénchéng-554 and -562 (parental group 1; red) and Ruian-90 and -133 (parental group 2; blue). The
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TABLE 4 Comparison of the mean numbers of nonsynonymous and synonymous substitutions per site, and their ratios in the coding
regions of WESV, BatCoV HKU2, PEDV, and HCoV-NL63

WESV (n = 9) BatCoV HKU2 (n = 5) PEDV (n = 7) HCoV-NL63 (n = 6)
Gene dN ds dN/dS dN ds dN/ds dN ds dN/dS dN ds dN/dS
nsp1 0.090 0.418 0.215 0.014 0.085 0.165 0.012 0.026 0.462 0.006 0.031 0.194
nsp2 0.075 0.365 0.205 0.022 0.154 0.143 0.010 0.051 0.196 0.006 0.023 0.261
nsp3 0.058 0.245 0.237 0.038 0.233 0.163 0.009 0.040 0.225 0.006 0.017 0.353
nsp4 0.043 0.297 0.145 0.009 0.101 0.089 0.005 0.048 0.104 0.002 0.020 0.100
nsp5 0.034 0317 0.107 0.005 0.061 0.082 0.007 0.038 0.184 0.001 0.013 0.077
nsp6 0.073 0.280 0.261 0.005 0.136 0.037 0.004 0.046 0.087 0.002 0.009 0.222
nsp7 0.033 0.254 0.130 0.000 0.166 0.002 0.042 0.048 0.002 0.006 0.333
nsp8 0.018 0.248 0.073 0.009 0.153 0.059 0.001 0.036 0.028 0.001 0.012 0.083
nsp9 0.039 0.369 0.106 0.005 0.204 0.025 0.000 0.044 0.000 0.013
nsp10 0.016 0.275 0.058 0.010 0.099 0.101 0.001 0.029 0.034 0.000 0.043
nsp11 0.040 0.124 0.323 0.000 0.000 0.000 0.029 0.000 0.040
nsp12 0.018 0.240 0.075 0.002 0.097 0.021 0.007 0.043 0.163 0.001 0.008 0.125
nsp13 0.021 0.243 0.086 0.001 0.097 0.010 0.002 0.053 0.038 0.000 0.007
nsp14 0.032 0.305 0.105 0.003 0.041 0.073 0.002 0.066 0.030 0.001 0.012 0.083
nsp15 0.032 0.225 0.142 0.003 0.065 0.046 0.006 0.062 0.097 0.001 0.005 0.200
nsp16 0.029 0.207 0.140 0.002 0.075 0.027 0.005 0.043 0.116 0.000 0.014
S 0.039 0.093 0.419 0.067 0.407 0.165 0.023 0.089 0.258 0.007 0.041 0.171
NS3 0.085 0.383 0.222 0.022 0.267 0.082 0.009 0.032 0.281 0.001 0.020 0.050
E 0.045 0.342 0.132 0.009 0.088 0.102 0.011 0.059 0.186 0.000 0.029
M 0.032 0318 0.101 0.007 0.137 0.051 0.008 0.032 0.250 0.006 0.016 0.375
N 0.056 0.338 0.166 0.036 0.260 0.138 0.011 0.068 0.162 0.004 0.016 0.250
NS7 0.242 0.471 0.514
NS7a 0.050 0.190 0.263

tional Committee on Taxonomy of Viruses (ICTV) has established the following genus
and species demarcation criteria in the family Coronaviridae: coronaviruses that do not
cluster together and share less than 46% sequence identity in the conserved replicase
domains with any other established member are considered a new genus, while viruses
that share more than 90% amino acid sequence identity in the conserved replicase
domains are considered to belong to the same species (13). Hence, the virus harbored
by the Asian house shrew is sufficiently divergent that it should be considered a distinct
member of the genus Alphacoronavirus, although not a new genus under the current
ICTV criteria.

Our analysis also revealed that WESV has had a complex evolutionary history.
Although WESVs exhibited distinct geographic clustering, indicative of in situ evolution,
the evolutionary relationships among viruses sampled from four counties were not
consistent with their geographic locations. Such a phylogeographic pattern might
reflect the influence of geographic barriers, such as mountains, rather than simple
isolation by distance. In addition, the fact that the S gene of WESV was divergent from
those of all known coronaviruses suggests that an intergenus recombination event may
have occurred, and strong evidence for intraspecies recombination was obtained. It is
also striking that the WESVs possess a distinct NS7 gene. Although a gene named ORF7
has been observed in the bat virus HKU8 (34), the NS7 gene of WESV exhibited no
sequence similarity with genes of HKU8 or any other known viruses, so it has an
unknown origin. In addition, the NS3 gene of WESV was genetically distinct from those
of known alphacoronaviruses and betacoronaviruses.

Diverse alphacoronaviruses and betacoronaviruses have now been identified in a
variety of bats globally (16, 17, 20, 34-40), based on which it has been proposed that
alphacoronaviruses and betacoronaviruses in other animals have their ultimate ances-
try in bats (21, 22). However, we observed that the WESVs harbored by shrews were

FIG 6 Legend (Continued)

background color of parental region A is gray, while that of parental region B is white. (B) Phylogenies of parental region A (nt 5248
to 7663) and region B (nt 1to 5247 and 7664 to the end of the sequence). The numbers (>70) above or below branches indicate
percent bootstrap values. (C) Recombination analyses of Wénchéng-554 and other known alphacoronaviruses.
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phylogenetically distinct within the genus Alphacoronavirus, suggesting that they may
have emerged early in Asian house shrews, and it is striking that WESV possesses an
especially divergent S gene. Together, these results suggest that alphacoronaviruses
have a far more complex evolutionary history than previously realized, with insectivores
likely playing a more important role. Hence, greater effort is needed to infer the
evolutionary history of alphacoronaviruses in a wider sample of mammalian species.

Shrews, classified in the order Eulipotyphla, have a broad geographic distribution
and exhibit substantial diversity, rivaled only by members of the muroid families,
Muridae and Cricetidae, and the bat family, Vespertilionidae (25). Asian house shrews
(Suncus murinus) have a wide distribution throughout the Old World tropics. However,
unlike bats and rodents, these mammals have not attracted attention with respect to
virus evolution, emergence, and transmission. The recent discovery of erinaceus coro-
navirus (EriCoV) in West European hedgehogs (Erinaceus europaeus) indicates that
insectivores are the natural reservoir of CoV (41). Over the past decade, additional novel
viruses have been identified in shrews (29-31), indicating that these animals may play
an important role in the evolution and transmission of viruses, including coronaviruses.
WESV was identified in 24 of 266 shrews sampled from four counties of two provinces,
with an overall detection rate of 9.02%, but not in rodents captured from the same
areas. Therefore, shrews appear to be a natural reservoir of coronaviruses, and thus,
their role in coronavirus evolution clearly merits further investigation.

MATERIALS AND METHODS

Trapping of small animals and sample collection. During 2013 to 2015, shrews were trapped in
mountainous regions of Xingguo and Yudu Counties in Ganzhou City, Jiangxi Province, and in the
Longwan district and Ruian and Wencheng Counties of Wenzhou City, Zhejiang Province, China (Fig. 1),
as described previously (3, 42). All the animals were initially identified by morphological examination and
were further confirmed by sequence analysis of the mt-cyt b gene (3). Euthanasia was performed before
necropsy. Every effort was made to minimize suffering. Rectal samples were collected from shrews for
CoV detection.

The study was reviewed and approved by the ethics committee of the National Institute for
Communicable Disease Control and Prevention of the Chinese Center for Disease Control and Prevention
(CDQ). All animals were treated in strict accordance with the Guidelines for Laboratory Animal Use and
Care of the Chinese CDC and the Rules for the Implementation of Laboratory Animal Medicine (1998)
from the Ministry of Health, China, under the protocols approved by the National Institute for Commu-
nicable Disease Control and Prevention.

DNA and RNA extraction and virus detection. Total RNA was extracted from fecal samples using
TRIzol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. The RNA was
eluted in 50 ul of diethyl pyrocarbonate (DEPC) water and was used as the template for reverse
transcription-PCR. Total DNA was extracted from rectal samples using a DNeasy blood and tissue kit
(Qiagen, Valencia, CA, USA) according to protocols suggested by the manufacturer.

CoV RNA was detected by RT-PCR as described previously (18, 19). Complete genomes of corona-
viruses were amplified using primers based on the conserved regions of known genome sequences (18,
19). The 5" and 3’ ends of the genomes of the newly discovered shrew coronaviruses were obtained by
5" and 3’ rapid amplification of cDNA ends (RACE) using a RACE kit (TaKaRa, Dalian, China). Sequences
were assembled and manually edited to produce the final viral genomes. Amplification of the mt-cyt b
gene was performed as described previously (3).

RT-PCR amplicons of <700 bp were purified using the QIAquick gel extraction kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’'s recommendations and subjected to direct sequencing. Purified
DNA of >700 bp was cloned into the pMD18-T vector (TaKaRa, Dalian, China) and subsequently
transformed into JM109-143 competent cells.

Phylogenetic analysis. Analysis of protein families was performed using the PFAM and InterProScan
programs (43, 44). Prediction of transmembrane domains was performed using the TMHMM program,
version 2.0 (http://www.cbs.dtu.dk/services/TMHMM/).

Because of extensive sequence divergence between the nucleotide sequences of different CoV
genera, all phylogenetic analyses were based on amino acid sequences. Accordingly, amino acid
sequence alignments were conducted using the MAFFT program employing the G-INS-i algorithm (45).
After alignment, gaps and ambiguously aligned regions were removed using Gblocks (v0.91b) (46).
Phylogenetic analyses were then performed using the sequences of eight complete CoV proteins: (i) nsp5
(3CLpro), (ii) RdRp (nsp12), (iii) nsp13 (Hel), (iv) nsp14 (ExoN), (v) nsp15 (NendoU), (vi) nsp16 (O-MT), (vii)
spike protein (S), and (viii) nucleocapsid protein (N) (12). Phylogenetic trees from these data were
estimated using the maximume-likelihood (ML) method implemented in PhyML v3.0 (47), with bootstrap
support values calculated from 1,000 replicate trees. The best-fit amino acid substitution models were
determined using MEGA version 5 (48).

Recombination detection. The full genome alignment of all WESV sequences was screened for
recombination using the RDP, GENECONV, and BootScan methods available within RDP4 (33). Only
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sequences with significant evidence (P < 0.05) of recombination detected by at least two methods and
confirmed by phylogenetic analysis were taken to represent strong evidence for recombination. In
addition, we visualized the recombinant and the parental strains determined as described above using
similarity plot analysis as implemented in Simplot version 3.5.1 (49), with a window size of 400 nt and
a step size of 40 nt.

Estimation of the numbers of synonymous and nonsynonymous substitutions. The numbers of

synonymous substitutions per synonymous site (dS) and nonsynonymous substitutions per nonsynony-
mous site (dN) for each coding region between each pair of WESV, BatCoV HKU2, porcine epidemic
diarrhea virus (PEDV), and HCoV-NL63 strains were calculated using the Kimura 2-parameter method
applied to synonymous and nonsynonymous sites as implemented in MEGA (v5) (48).
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