










FIG 4 ORFX protein inhibits the production of type I interferon. (A and B) 293T cells seeded in 12-well plates were transfected with 100 ng pIFN-�-Luc, 5 ng
pRL-TK, empty vector, an influenza A NS1-expressing plasmid, or increasing doses (100, 200, 400, 600, and 800 ng) of an ORFX-expressing plasmid. Empty
vector was added appropriately to ensure that cells in each well were transfected with the same amount of plasmids. The cells were infected with Sendai virus (100
hemagglutinating units/ml) at 24 h posttransfection. Samples were collected at 12 h postinfection, followed by dual-luciferase assay. The results were expressed
as the firefly luciferase value normalized to that of Renilla luciferase. The relative expression of IFN-� mRNA was determined by quantitative RT-PCR and
normalized to the expression level of GAPDH mRNA. (C) The expression of the NS1 and ORFX proteins was analyzed by Western blotting with an antibody
against HA tag. The experiments were replicated three times. (D and E) For the IRF3 translocation assay, 293T cells were transfected with empty vector-, NS1-,
or ORFX-expressing plasmid. After 24 h, the cells were infected with Sendai virus to induce IRF3 nuclear translocation. The cells were fixed at 8 h postinfection
and stained with anti-HA IgG. A goat anti-Sendai virus polyclonal IgG was used to stain the cells transfected with empty vector. A rabbit anti-IRF3 polyclonal IgG
was used to label IRF3. The white arrow indicates IRF3 nuclear translocation. The relative IRF3 translocation ratios were calculated for each group by counting
the number of IRF3 nuclear translocation cells (randomly selected from at least 4 fields) and dividing by the total number of infected or transfected cells. The IRF3
nuclear translocation efficiency of each group was expressed as the percentage of their relative IRF3 translocation ratios to that of the control (cells transfected
with empty vector). (F) Calu-3 cells were mock infected or infected with rWIV1 or rWIV1-�X (MOI of 5) or SeV (100 HAU/ml). At 4, 12, 24, and 30 h
postinfection, the cell RNA was extracted and used for quantitative RT-PCR of the expression level of IFN-� mRNA. The experiment was performed in triplicate
and replicated twice. (G) Vero E6 cells were pretreated with indicated amount of IFN-�, infected with wtWIV1, rWIV1, or rWIV1-�X at an MOI of 0.1 PFU/cell,
and posttreated with IFN-�. Viral replication was analyzed at 24 h postinfection by plaque assay. The experiment was performed in triplicate and replicated twice.
The differences between selected groups were significant, with P values of less than 0.05, as follows: 0.0049 (*; bars 4 and 6 in panel A), 0.0008 (**; bars 6 and 7
in panel A), 0.0072 (*; bars 4 and 6 in panel B), 0.018 (*; bars for rWIV1 and rWIV1-�X in panel F), and 
0.0001 (*** in panel G).
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ORFX protein was expressed (Fig. 4A). Similar results were ob-
served for IFN-� mRNA quantification (Fig. 4B and C).

An IRF3 nuclear translocation assay was performed to see
whether ORFX protein inhibits IFN production through inhibit-
ing this process. 293T cells were transfected with an empty vector-,
NS1-, or ORFX-expressing plasmid. After 24 h, IRF3 nuclear
translocation was induced by infection with SeV for 8 h. The rel-
ative IRF3 translocation ratios were calculated for each group by
counting the number of the IRF3 nuclear translocation cells (ran-
domly selected from at least 4 fields) divided by the number of
total infected or transfected cells. The IRF3 nuclear translocation
efficiency of each group was expressed as the percentage of their
relative IRF3 translocation ratios to that of the control (cells trans-
fected with empty vector). As expected, NS1 strongly inhibited
translocation of IRF3, while ORFX protein also showed inhibition
of IRF3 translocation but less efficiently (Fig. 4D and E).

To further investigate the IFN inhibition activity of ORFX, the
deletion mutant and wild-type recombinant virus were used to
infect Calu-3 cells at an MOI of 5. Mock-infected cells were used as
negative control. Calu-3 cells infected with SeV were used as pos-
itive control. Samples were collected at 4, 12, 24, and 30 h postin-
fection. The relative expression of IFN-� mRNA was determined
by quantitative PCR and normalized to the expression of GAPDH
mRNA. Compared to SeV, WIV1 recombinants induced low lev-
els of IFN-� mRNA in Calu-3 cells (Fig. 4F). The ORFX deletion
mutant induced a significantly higher level of IFN-� mRNA than
wild-type recombinant virus in infected cells at 12 h postinfection,
but there were no significant differences at 24 and 30 h postinfec-
tion (Fig. 4F). These results indicate that ORFX protein may play
a role in antagonizing IFN only at early times during WIV1 infec-
tion.

An ORFX deletion mutant shows increased sensitivity to
IFN-�. To further investigate the effect of ORFX on the viral sen-
sitivity of IFN, we tested the replication efficiencies of wtWIV1,
rWIV1, and rWIV1-�X in Vero E6 cells which were pretreated
and posttreated with IFN-�. The replication of rWIV1-�X was
inhibited and reduced by �0.5 log compared to that of wtWIV1
and rWIV1 at concentrations of 10 and 100 U/ml IFN-� (Fig. 4G),
whereas at a higher IFN-� concentration (1,000 U/ml), the

rWIV1-�X titers did not show an obvious decrease compared to
those of wild-type virus. We expected that the ORFX deletion
mutant would replicate less efficiently than the wild-type virus in
IFN-competent cells. However, we did not find a significant dif-
ference when we grew the two viruses in Calu-3 and HeLa-hACE2
cells, even at a very low MOI of 0.001 (Fig. 5).

ORFX protein activates NF-�B. NF-�B plays an important
role in regulating the immune response to viral infection and is
also a key factor frequently targeted by viruses for taking over the
host cell (27). Several proteins (Nsp1, N, and 3a) encoded by
SARS-CoV have activities in both IFN antagonism and NF-�B
activation (28). In this study, we also tested whether ORFX pro-
tein could activate NF-�B. 293T cells were transfected with pNF-
�B-Luc, pRL-TK, empty vector, NS1, or increasing amounts (200,
400, and 600 ng) of ORFX expressing plasmid. After 24 h, the cells
were mock treated or treated with TNF-	 for 6 h, and luciferase
activity was determined. ORFX protein obviously activated NF-
�B, no matter whether the cells were treated with TNF-	 or not
(Fig. 6A), whereas IL-8 was upregulated only when the cells were
treated with TNF-	 (Fig. 6B). However, no significant difference
was observed for IL-6 and IL-8 transcription levels between the
rWIV1-�X- and rWIV1-infected Calu-3 cells (Fig. 6C and D). A
significant difference was observed only for the induction of
TNF-	 mRNA at the late time of virus infection, when the ORFX
deletion mutant induced less TNF-	 mRNA (Fig. 6E).

DISCUSSION

In this study, we have developed a fast and cost-effective method
for reverse genetics of coronaviruses by combining two ap-
proaches developed by others (29, 30). Our method allows the
genomes of coronaviruses to be split into multiple fragments and
inserted into a BAC plasmid with a single step. Recombinant vi-
ruses can then be efficiently rescued by direct transfection of the
BAC constructs. As the genomes can be divided into multiple
short fragments, mutations can be introduced into individual
fragments easily (31). Using this method, we successfully rescued
three recombinant viruses derived from SL-CoV WIV1 (rWIV1,
rWIV1-�X, and rWIV1-GFP-�X). The recombinant rWIV1 and
rWIV1-�X replicated to titers close to those of wtWIV1 in Vero

FIG 5 Comparison of viral replication efficiencies of rWIV1-�X and rWIV1 in IFN-competent cells. Calu-3 (A) and HeLa-hACE2 (B) cells were infected with
rWIV1 or rWIV1-�X at an MOI of 0.001. Samples were collected at 0, 12, 24, 36, 48, 72, 96, and 120 h postinfection. The viral titers were measured by plaque
assay.
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E6 cells (Fig. 2C), suggesting that the deletion of ORFX did not
affect WIV1 replication in vitro. Northern blotting and fluores-
cence microscopy further confirmed that ORFX is transcribed as
sgRNA7 and translated in virus-infected cells. These results dem-
onstrated that the unique ORFX in SL-CoV WIV1 is a functional
gene but is not essential for virus replication. We propose that the
ORFX sgRNA is the template for the translation of a novel 11-kDa
accessory protein of WIV1, bringing the total number of group-
specific accessory proteins to ten.

In previous studies, it has been proved that SARS-CoV group-
specific accessory genes ORF3b and ORF6 inhibit host IFN pro-
duction and/or signaling during virus infection and contribute to
viral pathogenesis (20). It is interesting to know whether the

ORFX has a similar function in antagonizing IFN. In this study,
ORFX protein showed an inhibitory effect on IFN production, but
the effect decreased when more ORFX protein was expressed (Fig.
4A and B). Moreover, the ORFX deletion mutant had a signifi-
cantly lower inhibitory effect on IFN production than wild-type
recombinant virus in infected Calu-3 cells, but only at an early
time after infection (Fig. 4F). Furthermore, the IFN sensitivity
assay indicated that the ORFX deletion mutant was more sensitive
to IFN-� (Fig. 4G), suggesting that ORFX protein may participate
in subverting the antiviral state stimulated by IFN-�. All these
results suggested that ORFX participates in the modulation of the
IFN response. Previous studies showed that SARS-CoV ORF3a
and ORF7a activate NF-�B and upregulate IL-8 and CCL5 pro-

FIG 6 ORFX protein activates NF-�B. 293T cells were transfected with 100 ng pNF-�B-Luc, 10 ng pRL-TK, empty vector, an NS1-expressing plasmid, or
increasing amounts (200, 400, and 600 ng) of an ORFX-expressing plasmid. After 24 h, the cells were treated with TNF-	. (A) Dual-luciferase activity was
determined after 6 h. The results were expressed as the firefly luciferase activity normalized to that of Renilla luciferase. (B) The relative expression of IL-8 mRNA
was quantified through quantitative RT-PCR and normalized to that of GAPDH mRNA. Differences between selected groups were significant, with P value less
than 0.05, as follows: 
0.0001 (***; bars 1 and 3 in panel A), 0.0339 (*; bars 4 and 7 in panel A), and 0.0002 (***; bars 4 and 6 in panel B). n.s., not significant.
The experiments were performed three times. (C to E) The RNA extracted from Calu-3 cells for Fig. 4 was used for quantification of the expression of IL-6 (C),
IL-8 (D), and TNF-	 (E) mRNAs.
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duction (22, 23). In our study, we also found through a dual-
luciferase assay that overexpressed ORFX can activate NF-�B (Fig.
6A). Furthermore, the level of TNF-	 mRNA induced by wild-
type recombinant virus was significantly higher than that induced
by the ORFX deletion mutant, but only at the late stage of infec-
tion (Fig. 6E). These results indicated that ORFX also participates
in activation of NF-�B. We noted that the IFN inhibition activity
of ORFX was not dose dependent and decreased when there was
more ORFX expression. One possible hypothesis is that ORFX
inhibits IFN only at the early stage of infection. At the late stage, it
activates NF-�B, which in turn stimulate IFN expression, and this
leads to the attenuation of its IFN antagonist activity.

Coronavirus was previously shown to induce the unfolded-
protein response (UPR) and ER stress in infected cell culture (32).
Normally, ER is an active organelle for protein folding and mod-
ification. Loss of protein folding homeostasis would cause ER
stress and induce the UPR, leading to the activation of three ER
stress transducers. These transducers work in concert to attenuate
translation and improve ER folding capacity to restore ER homeo-
stasis (33). In this process, NF-�B is activated, and apoptosis will
be induced if ER stress is prolonged (32, 33). In this study, we
observed that the overexpression of ORFX protein led to cell death
and the decrease of Renilla values (data not shown). This may
imply that ORFX has a cytotoxic effect and an influence on overall
protein translation. We also found that ORFX colocalizes with an
ER marker. We hypothesize that ORFX may induce the UPR and
cause ER stress which would activate NF-�B and induce apopto-
sis, promoting viral release at the late stage of infection.

It should be noted that the IFN and NF-�B detection systems
used in this study were derived from and used in human cells.
Since the innate immune system of bats is special and probably
deficient in some aspects compared to the human system (34), it
will be interesting to conduct the same studies in bat cells to de-
termine whether ORFX protein has the same profiles as those
observed in the human cell system. The development of different
cell lines from the Rhinolophus bat, which is the reservoir host of
SL-CoV, will facilitate this research in the future.
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