




















LMP1-Induced IL-32 Influences EBV Life Cycle

FIG 5 Knockdown of IL-32 increases IL-6 expression. (A to D) LCLs were infected with shLuciferase, shIL-32-3, or shIL-32-5 lentiviruses for 5 days, and infected
cells were further selected with 2 pg/ml of puromycin for another 2 days. (A) Cells were reseeded at a concentration of 1 X 10* cells per well in 96-well plates. After
54 hof incubation, 1 p.Ci of [*’H]thymidine was added and incubation was continued for another 18 h. The amount of incorporated [*H]thymidine was measured
using a beta counter (upper portion). The protein expression of IL-32 and (-actin was measured by Western blotting. B-Actin served as the internal control
(lower portion). (B) Expression of PARP, caspase-3, IL-32, and (-actin was measured by Western blotting. 3-Actin served as the internal control. (C) IL-6
transcripts were detected by RT-qPCR, and the relative fold expression of IL-6 was normalized to the amounts of IL-32 transcripts in shLuciferase lentivirus-
infected cells. (D) Transcripts of IL-8 and IL-10 were detected by RT-PCR. 3-Actin served as the internal control.

transduced with LMP1. Moreover, overexpression of NF-kB p65
induced IL-32 expression in Akata and 293T cells (Fig. 4D). Of
note, knockdown of NF-kB p65 prohibited LMP1-stimulated
IL-32 expression (Fig. 4E). Furthermore, in EBV-immortalized
LCLs, depletion of NF-kB p65 using an shRNA approach de-
creased IL-32 expression (Fig. 4F). All these results indicate that
LMP1 stimulates IL-32 expression mainly via NF-kB p65.

Knockdown of IL-32 increases IL-6 expression. To investi-
gate further the biological function of IL-32 in LCLs, the cell pro-
liferation status was evaluated using a [*H]thymidine incorpora-
tion assay. As shown in Fig. 5A, knockdown of IL-32 did not affect
cell proliferation. Data from Fig. 5B show that knockdown of
IL-32 did not induce PARP or caspase-3 cleavage, suggesting that
depletion of IL-32 does not affect apoptosis. Previous studies
demonstrated that IL-32 enhances IL-6, IL-8, and IL-10 (29, 46,
47).In addition, these cytokines have been induced by LMP1 (48—
50). To explore the effects of IL-32-induced cytokine expression,
we depleted IL-32 expression in LCLs. As shown in Fig. 5C and D,
knockdown of IL-32 expression increased IL-6 but not IL-8 or
IL-10, suggesting that the effect of IL-32 on cytokine expression in
LCLs differs from those in other cell types.

IL-32 inhibited Zp activation through PKCS to maintain vi-
ral latency. Of interest, knockdown of IL-32 triggered viral lytic
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cycle progression in LCLs via expression of lytic proteins, includ-
ing Zta, Rta, and BGLF4 (Fig. 6A). Furthermore, the Zta tran-
scripts and the percentage of Zta-positive LCLs were increased in
cells in which IL-32 had been knocked down (Fig. 6B and C). We
explored the molecular mechanism by which IL-32 regulated lytic
cycle progression. EBV lytic cycle progression is triggered by the
expression of the immediate early genes Zta and Rta to activate the
Zta promoter (Zp) and Rta promoter (Rp) (1). As shown in Fig.
6D, overexpression of IL-32 inhibited Zta transactivation of Zp
activity by 50%. Several domains are present in Zp and are crucial
for Zp activities. ZID is one of these domains. Previous studies
have shown that Sp1, Sp3, and MEF2D can potentially bind to the
ZID element (51-53). Furthermore, our previous report showed
that the ZID region of Zp is essential for PKC3-mediated Zp trans-
activation via Sp1 (38). To investigate further whether IL-32 re-
pressed Zp activation through the PKCS8-responsible ZID do-
main, a reporter assay was performed with ZID deletion of Zp
(AZID-Zp). As shown in Fig. 6E, IL-32 expression did not influ-
ence Zta-activated AZID-Zp activity, suggesting that IL-32 inhi-
bition of Zp activation is probably mediated via the PKC3-trig-
gered ZID domain. To determine further whether IL-32 affects
PKC8-mediated Zp activation, we coexpressed IL-32 and en-
hanced GFP (EGFP)-derived wild-type PKC3 (WT-PKC3) or a

jviasm.org 5975

1sanb Aq 6TOZ ‘22 aunr uo /610 wse’IAl//:dny woly papeojumoq



Lai et al.

A LCL-51 LCL-52 B LCL-51 LCL-52
o © ° © = **
.88 o8 ¢ s0( [= -
aJ 2 4 4 d 4
5% 5 5% 5 225 L
[0
- — IL-32 g 20
folds 1 0.08 0.18 1 0.03 0.03 ® 15
<
p— Z
- Zia & 1.0
fods 1 219 185 1 3.01 23 £
& 05
S S Rta N
0
fods 1 1.37 1.25 1 3.42 2.13 © © © ©
s —— “ - BGLF4 o 8§ 08 o 8 8
s & S5 5 § 3
fods 1 162192 1 271 234 = = = = = <
) [72] 72} [72] [7] [} [
——— ey e e [-2CHN
D
c LCL-50 LCL-50 14 *
shLuc shlL-32-5 3 ® 12
(&) [32] (7]
100 L mig 100 mig 3 2 © 1
s0{ | (MFI:96) go{ [\ mFi105) = = Ry 0
= || —zta % -—CZta @ 9 G O
S 60 ARG Se0 (MF1:155) — L5 E ';;, 8
“\E‘;g \173% | 5401 /(||22.2% ) 22 5
B R20 ‘ . ) B 5
0 p \ -. B-actin T8 4
o0 102 10% 10% 10° 0 102 10%10*10° &
—»Zta —»Zta
0
IL-32 - + - +
LCL-53 LCL-53 Vector Zta
shLuc shiL-32-5 Q E
100 mig 100 mig ::’ 3 ° 6 n.s.
80 (MFI:105) 80 (MFI:102) 1 [} I |
= - 7ta = || w—mZta -5 ﬁ E 5
Se0 | MF1133)| S 60 (MF1:150) an ko)
540 [ 1137% | 5404 /[ |19.1% IL-32 S5 4
X 20 X 20 ' v O
0 0 W goactin 2T 3
o 10% 10% 10* 10° o 10? 10% 10* 10° L2
g2
—»7ta —»7ta g5 2
a
F 3
16 * 0
O Vector IL-32 = + o +
14
o W32 Vector Zta
g _ 12
£33 10
se&
2z °®
= >
&g 6
.
N 2
0

EGFP WT-PKC3 DN-PKC§

FIG 6 IL-32 maintains viral latency and inhibits Zp activation. (A and B) LCL-51 and LCL-52 were infected with shLuciferase, shIL-32-3, or shIL-32-5
lentiviruses for 5 days, and the cells were further selected with 2 pug/ml of puromycin for another 2 days. (A) Expression of IL-32, Zta, Rta, BGLF4, and B-actin
was measured by Western blotting. 3-Actin served as the internal control. The relative folds of Zta protein were determined by normalizing the level of each group
to the corresponding B-actin intensity and then standardized with the shLuciferase control in cells. (B) Expression of Zta transcripts was detected by RT-qPCR,
and the relative folds of Zta transcripts were normalized the level of each shIL-32 group to the corresponding 3-actin intensity and then standardized with the
shLuciferase control in cells. (C) Zta expression levels were compared in cells infected with lentiviruses containing shLuc or shIL-32-5 at day 5 postinfection. The
percentage of Zta-positive cells is shown on the left side, and efficiency of knockdown of IL-32 was verified by Western blotting as shown on the right side. (MFI,
mean fluorescence intensity.) (D) 293T cells were transfected with Zp plasmids, IL-32 expression plasmids, and pEGFP-C1. After 72 h, the relative luciferase
activity of each transfectant was normalized to its GFP intensity and standardized to the vector control cells. (E) 293T cells were transfected with AZID-Zp
plasmids, IL-32 expression plasmids, and pEGFP-C1. After 72 h, the relative luciferase activity of each transfectant was normalized to its GFP intensity and
standardized to the vector control cells. (F) 293T cells were transfected with Zp plasmids, IL-32 expression plasmids, and EGFP-derived wild-type PKC3
(WT-PKCS3) or the kinase-inactive form of PKC8 (DN-PKC3). After 72 h, the relative luciferase activity of each transfectant was normalized to its GFP intensity
and standardized to the vector control cells. (Statistical analysis was performed by Student’s ¢ test. *, P < 0.05; **, P < 0.01; n.s., no significance.)
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FIG 7 IL-32 interacts with cytosolic PKCS. (A) HeLa cells were transfected with IL-32 expression plasmids and WT-PKC8 or DN-PKCS3. Cells were fixed and
then stained with IL-32 antibody and the nuclear dye Hoechst. Red fluorescence indicates the IL-32 expression signal. Green fluorescence indicates EGFP,
WT-PKCS, or DN-PKCB3. Blue fluorescence indicates the cell nucleus. The colocalization of IL-32 and PKC3 is shown in the merge panel. (B and C) 293T cells
were transfected with IL-32 expression plasmids and WT-PKC8 or DN-PKCS3. The cell lysates were immunoprecipitated with anti-GFP antibody (B) or anti-Flag
antibody (C). The interaction was detected by Western blotting (WB) using anti-Flag antibody (B) or anti-GFP antibody (C). IgL, immunoglobulin light chain;
IgH, immunoglobulin heavy chain. (D) The subcellular localization of IL-32 and PKC8 was detected in LCLs by fractionation and Western blotting. PARP served
as the marker for the nuclear fraction (N), and a-tubulin served as the marker for the cytosolic fraction (C). (E) The endogenous interaction between IL-32 and
PKC3 was demonstrated in LCLs. LCL lysates were immunoprecipitated with anti-IL-32 antibody. The interaction was detected by Western blotting using
anti-PKC3 antibody. The mouse immunoglobulin (mIg) was the negative control.
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kinase-inactive form of PKC8 (DN-PKC8) and determined the Zp
activity. The results were similar to those in our previous work:
overexpression of WT-PKC3, but not DN-PKC3, induced Zp ac-
tivity (38). Of note, IL-32 expression decreased WT-PKC8-medi-
ated Zp activation (Fig. 6F). Together, our data suggest that IL-32
suppressed Zp activity via PKC3.

IL-32 hijacks PKCS in the cytoplasm to limit EBV lytic cycle
progression. It is well documented that PKC8 activation may be
detected by its translocation from the cytoplasm to the nucleus,
phosphorylation at specific sites, and cleavage to a catalytic frag-
ment (54-57). Confocal microscopy was used to investigate
whether IL-32 affected the localization of PKCS. Figure 7A re-
vealed that WT-PKC3 is expressed in both the cytoplasm and
nucleus, while DN-PKCS3 is expressed only in the cytosol. Of note,
coexpression of IL-32 prohibited the nuclear translocation of WT-
PKC8, WT-PKC3 being retained in the cytosol. In ectopic 293 cell
transfection, data from a co-IP assay indicated that IL-32 interacts
with PKC8 (Fig. 7B and C). To investigate further the cellular
localization of PKC8 and IL-32, a fractionation assay was per-
formed on EBV-immortalized LCLs. As shown in Fig. 7D, PKC8
was mainly expressed in the cytosolic fraction, with little in the
nuclear portion of LCLs. IL-32 was expressed only in the cytosolic
fraction. To confirm the endogenous interaction of IL-32 and
PKC3 in LCLs, a co-IP assay was performed on LCLs. Figure 7E
shows that IL-32 interacts with PKC8 in LCLs. These results sug-
gest that IL-32 interferes with Zp activation by interacting with
PKCS3 to block its nuclear translocation and trap it in the cytosol.

DISCUSSION

In general, EBV escapes immune surveillance by expressing a re-
stricted set of viral proteins. In addition to viral mimicry of im-
mune modulators, EBV-encoded latent proteins play important
roles in hijacking cellular factors to control further its progression
to lytic replication. However, how gamma herpesviruses maintain
a latent infection in the host remains obscure (58, 59). Previous
studies demonstrated that LMP1 maintains EBV latency by
NE-kB activation (60, 61). In this study, we revealed that LMP1-
mediated upregulation of IL-32 may be another way EBV main-
tains latency.

Several studies have shown that viruses modulate IL-32 expres-
sion through a variety of mechanisms. Influenza virus infection of
human lung epithelial cells, A549 cells, stimulates IL-32 expres-
sion via the cyclooxygenase-2 (COX-2) and RIG-I/MAVS/IKK
pathways to activate NF-kB (62). In addition, human papilloma-
virus (HPV) stimulates IL-32 expression in cervical cancer cells
through COX-2 (63). The hepatitis B virus (HBV)-encoded HBx
protein stimulates NF-kB to activate IL-32 promoter activity in
Huh?7 cells (64). Our results showed that LMP1 stimulates IL-32
expression through its CTAR1 and CTAR2 domains (Fig. 3A and
B), which is consistent with a previous study (65). Furthermore, a
reporter assay indicated that the NF-«B sites of IL-32 promoter
play an important role in LMP1-induced expression of IL-32 (Fig.
4B). A ChIP assay demonstrated LMP1-induced NF-kB binding
to the IL-32 promoter, leading to IL-32 transcription (Fig. 4C). A
previous study has shown that activation of NF-«kB inhibits the
Iytic replication of a gamma herpesvirus (66). Our study is consis-
tent with these reports and suggests that LMP1-induced NF-«kB
activation to upregulate IL-32 expression may play an important
role in the maintenance of virus latency.

Moreover, IL-32 promotes the survival of hepatoma cells
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through the NF-kB pathway (67). However, expression of IL-32
induces activation-induced death of T cells (25). IL-32 may be
involved in the pathogenesis of atopic dermatitis, because knock-
down of IL-32 decreases TNF-a- and IFEN-vy-induced apoptosis
(68). In our study, knockdown of IL-32 in LCLs did not affect cell
proliferation or apoptosis (Fig. 5A and B). This may be because
IL-32 plays various roles in different cell types. Taken together,
our results showed that knockdown of IL-32 increased IL-6 ex-
pression and promoted virus lytic replication, suggesting that
LMP1-induced IL-32 plays a major role in maintaining viral la-
tency, as well as affecting cytokine expression.

We wondered how IL-32, as an atypical cytoplasmic cytokine,
represses the Zta promoter. Recently, Kang et al. demonstrated
that IL-32 interacts with PKCe and STAT3 to induce IL-6 expres-
sion in monocytic THP-1 cells (28). The interaction of PKCS3,
IL-32, and C/EBPa suppressed the inhibitory effects of C/EBPa
on the IL-10 promoter in myeloid cells (47). These studies sug-
gested that IL-32 may modulate various functions by interacting
with different proteins in different cell types. In this work, we
uncovered a novel mechanism of a cellular factor which modu-
lates the EBV life cycle. Our previous studies indicated that PKC3
is an important modulator of EBV lytic cycle progression and that
overexpression of PKC3 significantly stimulates Zp activity (38,
54). In this study, we clearly showed that IL-32 downregulates Zp
activation by interacting with PKC8 and inhibiting the nuclear
translocation of PKC3 to maintain viral latency. These results sug-
gest that IL-32 may be one of the key regulators that maintain EBV
in persistent latent infection in the host. Our finding may provide
new evidence of how EBV uses cellular proteins to inhibit its rep-
lication cycle.
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