












FIG 4 Mapping of reads from clinical NGS data sets to the PHV genome. The coverage (y axis) achieved at each nucleotide position along the genome (x axis)
is plotted. (A) Coverage maps for the independently de novo assembled PHV-1, PHV-2, and PHV-3 genomes. The arrow depicts a break in coverage that
precluded whole-genome de novo assembly of PHV-3. (B) PHV genomes assembled by mapping of NGS reads from various clinical sample data sets to the PHV-1
genome. The inset information includes the name of the clinical data set, as well as the percent (%) and average (avg) genomic coverage achieved. nt, nucleotide.
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controls using four sets of primers detected PHV only in samples
that had been processed using Qiagen spin columns, while using
spin columns from other manufacturers or different extraction
methods consistently failed to detect PHV. A subset of PCR am-
plicons were Sanger sequenced and confirmed to be �99% iden-
tical to PHV-1. The detection of PHV in mock water extractions
through Qiagen columns was reproducible in two independent
laboratories (see Fig. S2A in the supplemental material) and with
the use of purified water from multiple sources (Fisher, Qiagen,
and Epicentre) (see Fig. S2B), directly implicating Qiagen spin
columns as the source of PHV contamination.

Identification of PHV sequences in environmental samples.
To gain further insight into the origins of PHV, publicly available
environmental metagenomic sequence data sets in the CAMERA
(46) and MG-RAST (47) databases were scanned for evidence of
PHV-related sequences using BLASTn alignments at a high-strin-
gency cutoff of 10�30. A total of 78 public data sets containing
213,615,095 sequence reads were analyzed, including 8,063,303
reads from vertebrate metagenomes, 395,038 reads from plant

metagenomes, 14,922,577 reads from sediment sewage and soil
metagenomes, 6,609,658 reads from freshwater metagenomes,
and 189,242,666 reads from marine metagenomes, including
plankton, microbialite, and coral reef metagenomic studies. Two
NGS data sets from marine sources containing Roche 454 pyrose-
quencing data were found to harbor 3 PHV sequences, in total
spanning 17% of the PHV-1 genome with 87 to 99% identity (Fig.
5C). Interestingly, both data sets corresponded to metagenomic
shotgun sequencing of sampled seawater off the Pacific coast of
North America, as two of the identified PHV reads were derived
from a study of metagenomes in Monterey Bay, California (CAM-
ERA project “North Pacific metagenomes from Monterey Bay to
Open Ocean”) (46, 54), and one was from a study of metagenomes
in coastal regions off Oregon and Concepción, Chile (CAMERA
project “Microbial initiative in low oxygen areas off Concepción
and Oregon”) (see Table S3 in the supplemental material) (46). As
the sample processing and generation of these data sets did not
involve the use of columns or kits manufactured by Qiagen (A. Z.
Worden, A. Bertagnolli, and S. Giovannoni, personal communi-

FIG 5 Whole-genome pairwise comparison of PHV strains and NIH-CQV relative to PHV-1. Black vertical bars indicate mismatches or insertions, while
horizontal lines indicate deletions in the whole-genome consensus sequence relative to PHV-1. nt, nucleotide.
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cation), these findings revealed that PHV is an environmental vi-
rus likely originating in ocean water and may have inadvertently
contaminated the spin columns during manufacture.

DISCUSSION

Here we present the discovery of a novel, highly divergent DNA
virus, PHV, that appears to be a hybrid intermediate between the
parvoviruses and circoviruses and is nearly identical by sequence
to another virus, NIH-CQV, recently reported to have been found
in patients with seronegative hepatitis. The arrangement of the
linear �3.6-kb genome of PHV, consisting of two forward-direc-
tion ORFs encoding the replication and capsid proteins and a pair
of inverted terminal repeats, is characteristic of viruses in Parvo-
viridae, and PHV retains the P-loop NTP-binding domain in the
replicase protein and PLA2-like and parvovirus coat motifs in the
capsid protein that are conserved among members of that family.
Although the replicase gene of PHV is more similar to that of
circoviruses by direct BLASTx searches, we were unable to recover
a closed circular form of PHV by inverse PCR, unlike the previous
study by Xu et al. describing the discovery of the related NIH-
CQV (33). If present in PHV, an episomal form, which has been
detected in parvoviruses such as adeno-associated virus and boca-
virus (55, 56), may represent a rare variant in the viral population.
By phylogenetic analysis, PHV does appear to bridge the interface
between circoviruses and parvoviruses (Fig. 2) and, as such, may
be related to the last common ancestor of these two ssDNA viral
family lineages.

The genome of PHV was independently detected and de novo
assembled in two laboratories from pooled samples from patients
with non-A-E hepatitis or diarrhea. However, subsequent identi-
fication of PHV sequences in multiple, widely different sample
sets and failure to confirm the presence of PHV after re-extraction
of NA by a method other than the use of Qiagen spin columns
raised a strong suspicion that PHV may be a laboratory contami-
nant. This was directly confirmed by PCR and deep sequencing of
extracted and eluted water controls, revealing that PHV-specific
sequences could be directly recovered from Qiagen spin columns.
The degree of potential contamination by PHV is significant given

that a contiguous stretch comprising �2/3 of the genome could be
de novo assembled from deep sequencing data corresponding to a
negative water control (Fig. 1C). Even more strikingly, direct
mapping of NGS reads corresponding to the water control to the
PHV-1 reference sequence enabled assembly of �97% of the ge-
nome (Fig. 3A). The high efficiency of silica-based spin columns
in concentrating DNA/RNA during extraction (57) may have
played a role in amplifying even trace contamination from PHV
occurring during the time of manufacture. Contamination was
observed only in spin columns from a single manufacturer (Qia-
gen) and was not seen with columns from other manufacturers
(Invitrogen), or with alternative methods of extraction, such as
TRIzol (Invitrogen) or magnetic beads (Ambion or Qiagen EZ1).
Furthermore, the extent of contamination appeared to be time
and/or batch dependent, as spin column-based kits manufactured
prior to 2011 were largely devoid of PHV sequences but those
made in 2012 and 2013 were likely to be heavily contaminated
(Fig. 3A and B). Such sporadic contamination events may inad-
vertently mislead researchers into erroneously making disease as-
sociations if they are unaware that a newly discovered virus is a
contaminant and not a bona fide infectious agent. The presence of
contamination in spin columns, such as the previously reported
detection of sequences corresponding to murine DNA, circovi-
ruses/densoviruses, and Legionella bacteria in Qiagen NA extrac-
tion columns (16, 58, 59), can also negatively impact the perfor-
mance of both clinical and research-based assays for pathogen
detection, underscoring the need for DNA-free reagents.

In the present study, the consensus genomes assembled from
the various PHV strains were remarkably similar, exhibiting 96 to
100% nucleotide identity with each other (Fig. 4). The very slight
observed differences may reflect natural variation or errors in the
deep sequencing, either native to the technology or due to se-
quencing artifacts from random priming or PCR duplication.
Strikingly, on an amino acid level, the translated sequences for the
major proteins were 99 to 100% identical across all 12 assembled
PHV genomes and NIH-CQV. Our finding of very low intrastrain
variation in the PHV genome contrasts markedly with that de-
scribed by Xu et al., in which significant genetic heterogeneity in

TABLE 1 PCR screening of commonly used viral nucleic acid extraction kits for parvovirus-like hybrid virus (PHV-1)a

Kit Spin column

PCR result for:

Replicase,
nt763-1010
(248 nt)

Bridge,
nt1554-2044
(491 nt)

Capsid,
nt1922-2044
(121 nt)

Capsid �
NCR,
nt3288-3448
(161 nt)

C F C F C F C F

RNeasy MinElute cleanup kit RNeasy MinElute column � � � � � � � �
RNeasy minikit RNeasy minicolumn � � � � � � � �

QIAamp UltraSens virus kit QIAamp minicolumn � � � � � � � �
QIAamp viral RNA minikit QIAamp minicolumn � � � � � � � �
QIAamp DSP virus kit QIAamp MinElute column � � � � - � - �

PureLink viral RNA/DNA minikit PureLink viral column � � � � - - - -
TRIzol LS kit NA � � � � - - - -
EZ1 viral minikit v2.0 NA � � � � - - - -
Water, nuclease-free (Qiagen,

Fisher Scientific, and Epicentre)
NA � � � � - - - -

a NCR, noncoding region; C, column elution; F, full extraction; nt, nucleotide; NA, not applicable.
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NIH-CQV corresponding to putative sequence variants between
patient samples was observed (33). Although fold coverage maps
from that prior study were not presented, it is possible that insuf-
ficient sequence coverage and/or errors in the NGS data may have
accounted for the observed high substitution rates. Notably, in
our study, greater sequence variation in the assembled genomes
was observed in PHV-3 (negative water control) and PHV-6C
(encephalitis samples, pool C), which had comparatively lower
depths of coverage than the other PHV genomes (Fig. 3 and 5). An
alternative possibility is that there is indeed genetic heterogeneity
in PHV/NIH-CQV that reflects natural variation and/or artifac-
tual variation arising from lot-to-lot variability in the degree of
spin column contamination.

The finding of laboratory contamination as the origin of PHV
suggests that NIH-CQV, which shares 100% amino acid identity
with PHV, is most likely also a laboratory contaminant. In the
study by Xu et al., there was 70% PCR positivity in seronegative
hepatitis patient samples with an average virus titer of 1.05 � 104

copies/�l (corresponding to 1.05 � 107 copies/ml) yet 0% posi-
tivity in healthy blood donors (33). The dichotomy between these
results and serological detection showing comparable rates of pos-
itivity for IgG specific to the C-terminal portion of the NIH-CQV
capsid protein in hepatitis patients and blood donors is striking.
The PCR results may be explained by lot-to-lot variability or the
use of a Qiagen extraction kit prior to 2011, as those kits appeared
to be less contaminated with PHV/NIH-CQV, while the serolog-
ical results may potentially be due to detection of cross-reactive
antibodies by the immunoblot assay. Previously, a serological as-
say designed to detect antibodies to p15E of XMRV showed ele-
vated seroreactivity in human T-cell lymphotropic virus type 1
(HTLV-1)-infected individuals (60), although none of these indi-
viduals had detectable antibodies to a second XMRV protein,
gp70. Subsequent analysis revealed that a highly conserved se-
quence within the immunodominant region of HTLV gp21 that is
shared with p15E was likely the source of the cross-reactive anti-
bodies elicited by HTLV-1 infection (60). In the study by Xu et al.
(33), confirmatory data based on serologic reactivity to multiple
nonoverlapping epitopes within a single protein or more than one
viral protein would have provided stronger evidence of infection
by NIH-CQV.

By data mining of publicly available environmental metag-
enomic databases, sequences with 100% identity to PHV/NIH-
CQV were detected in coastal waters off North America. The rel-
atively low number of reads detected is likely due to several factors:
(i) high-efficiency concentration of viral DNA in the spin col-
umns, (ii) differential rates of PHV abundance in ocean water, and
(iii) lower-throughput Roche 454 pyrosequencing rather than
Illumina NGS for data generation. Viral abundance in aquatic
ecosystems is exceedingly high, with concentrations estimated at
�108 per 1 ml (61). In total, approximately 1030 viruses are
thought to reside in the world’s oceans, constituting a vast, largely
unsequenced reservoir of genomes. In addition, highly diverse
ssDNA viruses, such as circoviruses and parvoviruses, have been
detected in seawater (62) and in ocean dwellers such as peneid
shrimp (63), and viruses are known to infect diatoms (algae) that
are ubiquitous in seawater (64, 65). Taken together, these obser-
vations suggest a plausible pathway for how PHV contamination
of the NA spin columns could have occurred. Column-based NA
purification is a solid-phase extraction method that binds NA by
adsorption to silica, and the silica used in many commercial spin

columns is derived from the cell walls of diatoms (57). If Qiagen’s
NA extraction kits and “silica gel membrane technology” involve
the use of diatoms (66), it is plausible that PHV is a virus of dia-
toms and had inadvertently contaminated the spin columns dur-
ing manufacture. The sporadic contamination observed in the
silica-based spin columns (Fig. 3A and B) may thus be due to
seasonal variation in diatom abundance, diatom type, and rates of
viral infection (67). The contamination of spin columns is not
confined to PHV but can also be seen by the presence of sequences
corresponding to phages, circoviruses, and parvoviruses other
than PHV (16). Further studies will be needed to establish that
PHV is a virus of diatoms. Notably, we did not detect PHV in
environmental metagenomic data sets corresponding to other
oceanic or environmental communities, which may reflect a lim-
ited geographic and temporal distribution for the virus or a bias
and/or incompleteness in the publicly available metagenomic da-
tabases surveyed. The impact, if any, of these oceanic viruses on
human health or public safety is unknown.

As the use of molecular methods such as deep sequencing for
pathogen discovery becomes more frequent, it is critical that ro-
bust strategies be developed to rapidly determine the biological
and clinical relevance of any new candidate agent. This is espe-
cially true with the discovery of novel, potentially transfusion-
transmissible viruses in blood that may have an immediate impact
on infectious diseases and public health (68), as exemplified by the
high-profile putative association between XMRV and chronic fa-
tigue syndrome that was eventually refuted by rigorous follow-up
investigation (19–26). In the present study, the confirmation of
PHV as a laboratory reagent contaminant and not a candidate
blood-borne infectious agent was made possible by (i) indepen-
dent assessment at two research sites, (ii) free and open sharing of
sequence data corresponding to multiple sample cohorts between
laboratories, (iii) use of control samples subjected to the same
extraction and deep sequencing steps as experimental samples,
(iv) direct PCR confirmation of viral contamination, and (v) data
mining of publicly available metagenomic sequence databases de-
rived from a vast array of clinical and environmental samples. Our
results thus strongly call into question any association of the PHV
and NIH-CQV viruses with seronegative hepatitis or, indeed, any
bona fide infections of humans. Timely reporting of “dediscover-
ies” as well as discoveries, by focusing effort and resource invest-
ment, is needed to maximize the translational impact of pathogen
discovery to clinical medicine and infectious diseases.
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