


















FIG 8 EV71 infection is caveola dependent in Jurkat T lymphocytes. (A) The Jurkat T cells were incubated with biotinylated anti-SCARB2 antiserum or
anti-PSGL-1 antiserum (black curve) prior stained with FITC-conjugated avidin or anti-mouse antibody, respectively. The Jurkat T cells incubated with the
respective isotype IgG (gray curve) as controls were included. Stained cells were suspended in 1� PBS before run on a FACScan flow cytometer and analyzed
using FCS Express V3 (De Novo Software). (B) Cells were infected with EV71 (MOI � 0.05) and then cultured at 37°C for additional incubation from 0, 0.5, 1,
3, 6, and 24 h. Total RNA were extracted at each time point postinfection and used to detect the viral RNA by real-time RT-PCR as described previously. Cells were
transfected with 100 pmol of human CLTB-, CAV-1-specific siRNA or control siRNA and then cultured at 37°C for 48 h. After incubation, total RNAs were
isolated to assay clathrin or caveolin-1 mRNA by real-time RT-PCR using the respective primers (Table 1) (C) and protein expression by immunoblotting with
anti-clathrin or anti-caveolin-1 antibody (D). Changes in clathrin or caveolin-1 expression were compared to the expression in control siRNA-transfected cells
(as 100%). After EV71 (MOI � 0.05) infection, total RNA and lysates were prepared at 24 h postinfection to detect viral RNA (E) and capsid proteins (F) as
described previously. The mean relative expression of RNA and protein levels of clathrin, caveolin-1, and EV71 were calculated as described previously. The
cellular �-actin detected as internal control for the findings shown in panels E and F was included. The data were quantified using Image-Pro Plus 6.0 software.
Three independent experiments were performed, and one of them were shown.
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results from inhibitory assays (Fig. 5 and 6), support that caveola-
dependent endocytosis is essential for PSGL-1-mediated EV71
early infection.

EV71 infection mediates a caveola-dependent but not clath-
rin-dependent pathway in PSGL-1-expressing human T cells.
Human T cells such as Jurkat T cells only expressing PSGL-1 on
the surface was confirmed by previous report (9) and by our flow
cytometric analysis using specific antibody against PSGL-1 com-
pared to SCARB2 antibody (Fig. 8A). In the kinetic infection,
Jurkat T cells was susceptible for EV71 infection (MOI � 0.05)
was judged by the detection of viral RNA expression as early as at
6 h and significant increase at 24 h postinfection (Fig. 8B). Pre-
treatment of Jurkat T cells with either CLTB or CAV-1 siRNA all
downregulated the respective mRNA (Fig. 8C) and protein (Fig.
8D) expression after 48 h transfection. At 24 h after EV71 infec-
tion, viral RNA (Fig. 8E) and their capsid protein (Fig. 8F) expres-
sion were measured, and all were reduced significantly in CAV-1
siRNA-transfected cells but remained unchanged in the CLTB
siRNA- or control siRNA-transfected cells. These results indicate
that the pathway of EV71 infection in Jurkat T cells is caveola
dependent and clathrin independent.

EV71 entry into PSGL-1-expressing cells requires lysosomal
acidification. After the endocytosis of viral particles, acidification
in the endosome is the key step for rearrangement of the viral
capsid structure, resulting in the release of viral RNA from the
particles for replication (32, 33). To elucidate the role of endo-
somal acidification in PSGL-1-mediated EV71 infection, we used
lysosomotropic agents, the compounds ammonium chloride
(NH4Cl) and chloroquine, which have weak bases and can inhibit
endosomal acidification by increasing intracellular pH (34–36),
and bafilomycin A1, which acts by inhibiting vacuolar H� ATPase
(V-ATPase) that prevents maturation of autophagic vacuoles by
inhibiting fusion between autophagosomes and lysosomes (37) in
our study. Pretreatment of PSGL-1-L929 and RD cells with vari-
ous doses of NH4Cl (Fig. 9A), chloroquine (Fig. 9B), and bafilo-
mycin A1 (Fig. 9C) prior to EV71 infection was performed. No
cytotoxicity of NH4Cl, chloroquine, and bafilomycin A1 treat-
ments in both infected cells was noted. The results of real-time
RT-PCR analysis indicated that pretreatment of RD and PSGL-1
cells with NH4Cl, chloroquine, and bafilomycin A1 significantly
inhibited EV71 infection in a dose-dependent manner. These data
confirmed that endosome-lysosomal acidification is required for

FIG 9 EV71 infection is pH dependent in PSGL-1-L929 and RD cells. Various concentrations of chloroquine (A), NH4Cl (B), and bafilomycin A1 (C) were
individually added to PSGL-1-L929 and RD cells prior to infection with EV71 (MOI � 1). Cells were incubated for 3 h, and total RNA was isolated prior to the
evaluation of the viral transcripts using real-time RT-PCR. The cytotoxicity of inhibitors was evaluated using LDH assay. The mean relative viral RNA compared
to untreated cells was calculated. The data were obtained from three independent experiments.
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clathrin-dependent EV71 infection in RD cells and also for
caveola-dependent infection in PSGL-1-L929 cells.

DISCUSSION

Beside enterovirus 71, several viruses also use multiple cellular
receptors for host entry, such as PVRL4 (nectin 4) and SLAM
(CDw150) in the measles virus (38, 39), angiotensin-converting
enzyme 2 and CD209L (L-SIGN) in the severe acute respiratory
syndrome coronavirus (40, 41), and ubiquitous glucose trans-
porter GLUT-1 and neurophilin-1 in human T-cell lymphotropic
virus type 1 (42, 43). Previous studies identified the requirement
for clathrin-dependent endocytosis in EV71 infection of human
SCARB2-expressing mouse NIH 3T3 cells and human RD cells
(24, 25). In the present study, we demonstrated that caveola-me-
diated endocytosis is required for EV71 entry in human PSGL-1-
expressing cells. These results suggest that differential cellular re-
ceptors determine the pathway of endocytosis in EV71 infection.
Investigators have observed a similar phenomenon in herpes sim-
plex virus (HSV) infection, which uses nectin-1 receptors and the
TNF/NGF receptor family for host entry (44, 45). The differential
expression of cellular receptors in different cells might also deter-
mine the tissue tropism of EV71 infection in the host. Similarly,
HSV infection uses distinct pathways for entry and eliciting tissue
tropism (46), suggesting that receptor-determining factors in a
target cell with multiple cellular receptors have a major influence
on viral infection.

In contrast to the ubiquitous expression of SCARB2 in somatic
cells, PSGL-1 is restrictedly expressed in myeloid, lymphoid, and
dendritic cells and serves as a common ligand for P-, L-, or E-
selectin in platelets, leukocytes, or endothelium cells. It plays a role
in leukocyte and inflammatory cell infiltration in inflammatory
tissues (14, 15). P-selectin glycoprotein ligand-1 has been identi-
fied as one of the receptors to which EV71 binds when it infects
myeloid, lymphoid, and dendritic cells. Nishimura et al. identified
that a monoclonal antibody (KLP1) can neutralize the binding
between EV71 and PSGL-1 by blocking the recognition sites for P-
and L-selectin (9). The binding site for the viral particle on
PSGL-1 is identical to the selectin binding site that is responsible
for cellular signal transduction (9), suggesting that the binding of
EV71 might initiate signals for the recruitment of EV71-infected
leukocytes or neutrophils to infiltrate the relevant tissues and re-
lease the replicating viruses. Clinical studies have detected large
amounts of neutrophil-like inflammatory cells (CD68�, CD15�)
and three types of lymphocytes (B cells, CD4�, and CD8� T cells)
in the CNS of severe EV71-infected patients (47, 48). These studies
also observed EV71 particles in the CNS of these patients. How-
ever, it remains unclear whether PSGL-1 expressed on inflamma-
tory cells mediates EV71 infection and also triggers infiltration
into the CNS to result in severe neurological diseases.

Previous studies have shown that the binding of the PSGL-1
ligand (PSGL-1L) to PSGL-1 activates phosphoinositide 3-kinase,
Src, or mitogen-activated protein kinase signaling, resulting in
actin redistribution and interleukin secretion (49–51). Recent
studies described the recruitment and activation of leukocytes and
the generation of CD4� CD25� Foxop3� regulatory T cells and
tolerogenic dendritic cells in tolerogenic immune responses after
PSGL-1–PSGL-1L engagement (52, 53). The role of PSGL-1 in
EV71 infection, such as the induction of tolerogenic immune re-
sponses following the binding of EV71 to PSGL-1 that enable the
virus to escape host defenses, has yet to be fully elucidated. In the

present, we demonstrate that the mechanism of EV71 entry is
receptor dependent, in which human PSGL-1 initiates caveola-
dependent endocytosis in parallel with the activation of clathrin-
dependent endocytosis by human SCARB2. These findings might
facilitate the development of anti-EV71 medications.
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