
interaction with PI(4,5)P2 could trigger a conformational
change or stabilize a specific orientation of the protein, allow-
ing the interaction with PS. This model is supported by the fact
that in other retroviruses, MA binding to PI(4,5)P2 causes
large structural modifications. Nuclear magnetic resonance
data show that HIV-1 MA binding triggers the “myristyl
switch” (48), and in vitro assembly data suggest that it may
induce a profound reorganization in Gag oligomer formation
(trimers instead of dimers) (1, 18). In the case of HIV-2, the
first MA helix is destabilized upon PI(4,5)P2 binding but is not
sufficient to trigger the myristyl switch (49). EIAV MA also
shows motions upon PI(4,5)P2 binding, with possible conse-
quences on trimerization (11). PI(4,5)P2 binding could then be

a key step in retroviral assembly, causing structural modifica-
tions that promote myristate exposure, multimerization, and
PS binding.

The main difference between our results and previous ob-
servations of Myoc1 or PKC�-C2 is that for MuLV-MA, PS is
providing the specificity for PI(4,5)P2 binding.

The affinities of the interaction between MA and PI(4,5)P2

alone for HIV-1, HIV-2, and EIAV were measured by nu-
clear magnetic resonance [with soluble species of truncated
PI(4,5)P2]. The Kd values were all quite high, between 100 and
300 �M (i.e., low affinities) (11, 48, 49). In the present study,
the Kd was lower (Kd � 22.5 
 1.3 �M), indicating a high
affinity of the interaction between MuLV MA and PI(4,5)P2.

FIG. 7. Electron microscopy of wild-type and FrMuLV MA mutants. 293T cells transfected with Gag-Pol expression vectors were fixed in 4%
paraformaldehyde–1% glutaraldehyde, treated, and observed as described in Materials and Methods. Wild-type (wt) MuLV Gag-Pol (A), G2A
myr(�) (B), m3 (C), and m6 (D) are shown. Scale bars represent 200 nm.
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This affinity may suggest the specific targeting and binding of
MuLV Gag to the plasma membrane. In addition, the Kd

obtained in the presence of PS, 5.4 
 1.7 �M, enhances it. The
affinity enhancement by PS may therefore also exist for other
retroviruses. Another study was carried out on RSV matrix
(16), but the authors reported no affinity of MA for PIPs.
Those experiments, however, were done in a simpler system,
and, as for HIV-1, the interaction with PIPs may necessitate
more complex environments.

Highly consistent with our data, an analysis of retroviral
particle lipidome was recently carried out (8). The authors
showed that PI(4,5)P2 and PS were the most enriched phos-
pholipids in the particles for HIV-1 and MuLV, suggesting that
these lipids are required for retrovirus assembly and most
probably for Gag targeting and budding at the plasma mem-
brane. A decrease in the level of viral production under con-
ditions of 5PtaseIV overexpression was also reported, in agree-
ment with our observations for MuLV Gag showing that the
depletion of the intracellular PI(4,5)P2 pool upon 5PtaseIV
phosphatase overexpression decreased levels of MuLV release
(Fig. 3).

Our data showed that the polybasic-region mutants partially
lose the capacity to bind biomimetic membranes (Fig. 2) and
cellular membranes (Fig. 5 and 6), indicating that the polybasic
region R31KRR34 is involved in MuLV Gag membrane bind-
ing. The data also showed that multiple substitutions in this
region impaired particle release and the localization of Gag
(Fig. 4, 6, and 7), in agreement with previous work on
MoMuLV Gag (52). Part of wild-type Gag traffics through the
late endosomal/lysosomal pathway, as previously shown (3, 27,
51), while part of Gag is located at the plasma membrane (Fig.
7), but mutants were diffuse in the cytoplasm (Fig. 5 and 6) or
eventually accumulated in intracellular compartments (Fig. 6
and 7), suggesting that the polybasic region of MuLV MA was
not required for Gag targeting to internal compartments. By
electron microscopy, the assembly of these mutants was ob-
served either in the cytoplasm or in internal compartments, as
opposed to wild-type Gag, which buds mainly at the plasma
membrane (Fig. 7). This favors the notion that the MuLV MA
basic cluster is most probably a signal for Gag targeting to and
assembling at the plasma membrane. These results suggest that
the polybasic region in MA not only is necessary for the sta-
bilization of Gag membrane binding, in synergy with the an-
choring of the myristate, but also contributes to the “choice” of
the viral assembly site.

In contrast, the isolated basic-residue mutants harbored
mostly wild-type-like phenotypes and have no major role in
particle assembly.

We propose a scheme for MuLV Gag targeting and assem-
bly, notably at the level of MA-cell membrane interactions.
Our results favor the fact that MuLV Gag, having a high
affinity for PI(4,5)P2/PS, is directly addressed at the plasma
membrane but could also bind endosomal membranes since
MA is able to interact with all PIPs. The virions could then be
produced by budding at the plasma membrane or at internal
membranes, as suggested previously for HIV-1 (21, 23, 37, 41).

In conclusion, it appears that the MA-PIP interaction is an
obligatory step for Gag membrane targeting and binding and,
thus, for efficient retroviral assembly at the plasma membrane.
Even though no classical PIP binding cleft has been observed

for the MuLV MA domain, comparisons between several ret-
roviral MA domains (36) allow the identification of a con-
served polybasic region in the N-terminal domain of Gag. This
MA basic cluster is most probably the PIP binding site of Gag
and represents a potential target for new antiviral drug design.
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