












FIG. 8. Electron microscopy. Nontransfected RK13 cells were infected with either wild-type PrV (A and B) or PrV-gE/I/M2 (C and D) and analyzed 16 h after
infection. (E and F) RK13-gE/I (E) and RK13-gM (F) cells after infection with the triple mutant. Bars represent 750 nm in panel A, 500 nm in panel B and D, 2 mm
in panel C, and 1 mm in panels E and F.
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conserved throughout the Herpesviridae (28). Part of intracel-
lular and virion gM can be found in a complex with another
conserved nonessential protein, gN, the product of the UL49.5
gene (21). gM-deleted HSV-1, EHV-1, and PrV grow to 10- to
100-fold-lower titers in vitro and are attenuated in vivo (2, 7,
32, 43). Deletion of gM appears to have an effect on kinetics of
penetration in EHV-1 and PrV and also reduces plaque size to
various degrees. The effect on penetration, at least in PrV,
appears to be a result of the disruption of the gM/gN complex
since a gN-deleted PrV mutant exhibits a similar reduction in
penetration kinetics but no alteration in plaque size (21).

As shown here, deletion of either gE/gI or gM has only a
moderate effect on plaque size of PrV-Ka, which confirms
previous results (8, 34). However, simultaneous inactivation of
gE/gI and gM results in a severe deficiency in plaque forma-
tion, whereas penetration was not more affected by the com-
bined deletions compared to gE/I- or gM-deleted viruses. This
again shows the distinction between direct viral cell-to-cell
spread and entry. Strictly speaking, a small-plaque phenotype
as indication for impairment of direct viral cell-to-cell spread
can be effected by deficiencies at various levels of viral repli-
cation. In particular, inactivation of a number of genes, e.g.,
UL3.5 or UL20, whose products are involved in virion mor-
phogenesis and egress, results in strikingly reduced plaque size.
In both cases, virion morphogenesis (18) is blocked at intracy-
toplasmic stages immediately prior to secondary envelopment
(UL3.5 [14]) or after secondary envelopment before transfer to
the cell surface (UL20 [15]). Simultaneous deletion of gE/gI
and gM also appears to affect a step prior to secondary envel-
opment. However, whereas in the UL3.52 mutant cytoplasmic
vesicles and capsids are juxtaposed, in the triple-deletion gly-
coprotein mutant capsids accumulate in the cytoplasm in as-
sociation with electron-dense material which might represent
tegument components. Unfortunately, no antibodies specific
for PrV tegument proteins were available, and so final proof
for this assumption is still lacking. It is interesting that around
the capsids within these inclusions can be observed a clear halo
which is indicative of a spatial separation between capsid and
the amorphous proteinaceous material.

One-step growth analysis shows that the triple-deletion gly-
coprotein mutant replicates on noncomplementing cells with
significantly lower efficiency than the gE/I and gM deletion
mutants. This effect can be explained by the defect in virion
morphogenesis resulting in less infectious virus being pro-
duced. It is noteworthy that this defect can also be compen-
sated to the level of the gE/I- or gM-deleted mutants by rep-
lication on complementing, gE/gI- or gM-expressing cells.
However, the decrease in titer in the gM2 mutant as also
observed after growth of the triple mutant on gE/I-expressing
cells is not explained by our electron microscopic analyses.
Thus, there might be another function of gM, in addition to its
role in virion morphogenesis as described here, which affects
overall growth performance of the virus.

Deletion of gE/gI specifically affects transneuronal spread of
PrV and HSV-1, although the molecular basis for this pheno-
type is still unclear. Based on our results, one could speculate
that the functional synergy of gE/gI and gM, as observed in cell
culture, might not apply in all instances in vivo. Perhaps gM is
unable to fulfill its role in virion egress or direct viral cell-to-
cell spread in specialized cells such as neurons. Then, absence
of gE/gI could result in a phenotype like the one demonstrated
here in the triple-deletion mutant. This could also explain the
necessity to phylogenetically conserve redundant functions to
increase fitness of the virus in those circumstances. However, it
is also conceivable that the observed deficiencies in transneu-
ronal transfer (1, 6, 13, 26, 52) and virion morphogenesis (this

report) are not correlated but reflect a multifunctional nature
of the gE/gI complex.

At present it is unclear at exactly which step in virus matu-
ration gE/gI and gM are involved. Possibly they are required
for directing intracytoplasmic capsids to the site where final
envelopment occurs, i.e., to the trans-Golgi region. This effect
could also be indirect in that these glycoproteins primarily
interact with tegument, which then recruits capsids to the site
of envelopment. It is well known that in herpesviruses envel-
opment of tegument components occurs, leading to so-called
light particles (L-particles) (47, 51). In this context, it is inter-
esting that L-particles are readily observed when cells are in-
fected with PrV mutants deficient in intranuclear capsid as-
sembly, e.g., after inactivation of the UL28 gene (39). In
contrast, in none of the mutants with defects in the intracyto-
plasmic egress pathway so far described for PrV, UL3.52 (14),
UL202 (15), or gE/I/M2 (this report), were L-particles pro-
duced. This finding argues that the products of these genes are
required for the formation and release of enveloped structures
with or without capsid.

In summary, we provide evidence for a synergistic effect of
deletions of glycoproteins individually designated nonessential
on a crucial step of virion morphogenesis. Neither of the two
functional units gE/I or gM has so far been implicated in a late
step in virus maturation preceding final envelopment of cap-
sids in the cytoplasm. In the absence of either gE/I or gM,
morphogenesis appears to proceed relatively normally, with
only slightly reduced efficiency, as indicated by one-step growth
analysis and confirmed by electron microscopy. In contrast,
when both functional units are absent, virus maturation is
inhibited and full capsids accumulate in the cytoplasm associ-
ated with electron-dense material, presumably tegument. We
hypothesize that functions of so-called nonessential glycopro-
teins may in fact be at least partially redundant and may be
uncovered only when more than one functional unit is inacti-
vated. Nevertheless, these functions are important for the viral
life cycle, which could explain conservation of the proteins
involved.
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