












FIG. 7. Cell surface and intracellular localization of pORF2 and its mutants. COS-1 cells transfected with pSG-ORF2 (A and B), pSG-ORF2[D2-34] (C and D),
or pSG-ORF2[137,310,562] (E and F) were fixed with 4% paraformaldehyde–PBS and stained with rabbit anti-pORF2, followed by the goat anti-rabbit IgG-FITC
conjugate. Antibody incubations were carried out in the absence (A, C, and E) or presence (B, D, and F) of 0.1% saponin for surface and intracellular staining,
respectively. The stained cells were mounted in 20% glycerol and viewed and photographed with a fluorescence microscope. Representative views are presented.
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nal signal sequence, also translocated to the ER and was pro-
tected from trypsin digestion.

The in vitro synthesis of wild-type and mutant forms of
pORF2, followed by a translocation assay with trypsin also
provided some insight into the folding of this protein. Being
rich in lysine and arginine residues, the protein has 59 possible
trypsin digestion sites, rarely resulting in peptides 50 amino
acids or longer. Yet, at least four distinct bands of about 40 to
60 kDa were observed upon tryptic digestion, suggesting ex-
tensive folding of the in vitro-synthesized polypeptide, result-
ing in the sequestration of a majority of trypsin-sensitive sites.
The N-terminally-deleted protein lacking the first 34 amino
acids, pORF2[D2-34], appeared to fold almost identically to
the wild-type pORF2, as was apparent from the major tryptic
fragments generated. Interestingly, when just three conserved
residues involved in the N-linked glycosylation of pORF2 were
changed, the mutant pORF2[137,310,562] became completely
sensitive to trypsin in the absence of microsomal membranes.
This observation is compatible with a drastically different fold-
ing of this mutant polypeptide.

Proteins are translocated across the ER membrane through
two distinct pathways, one dependent upon the signal recog-
nition particle (SRP) (29) and the other independent of it (6).
The targeting route depends largely upon the hydrophobicity
of the signal sequence present on the protein to be translo-
cated (22). Proteins with a hydrophobicity index (according to
Kyte-Doolittle) of 12.0 or less show SRP-independent trans-
location, while those with an index approaching 13.0 are SRP
dependent (22). An analysis of the pORF2 signal sequence
showed a hydrophobicity index of 13.0 for the core, suggesting
an SRP-dependent mode of translocation. This is further sup-
ported by experiments showing cotranslational but not post-
translational translocation of pORF2 in the presence of exog-
enously added microsomal membranes. SRP-dependent
translocation tends to be cotranslational (29), while the SRP-
independent translocation is posttranslational (22). It will be of
interest to determine if pORF2 interacts with components of
the SRP and resident ER proteins.

The localization of wild-type and mutant ORF2 proteins at
the cell surface was studied by indirect immunofluorescence of
the transfected cells. Since both wild-type and the glycosyla-
tion-null triple-Asn mutant but not the signal-deleted mutant
were found on the cell surface, the ER localization of pORF2
and its entry into the cellular secretory network are essential
prerequisites for cell surface localization of pORF2/gpORF2.
Glycosylation of pORF2 is not important for its appearance on
the cell surface.

What is the functional significance of pORF2 glycosylation?
It is not clear if the addition of N-glycans has any role to play
in viral capsid assembly or virus-host cell interactions. The
modification of pORF2 may occur simply because the protein
has accessible N-linked glycosylation sites and is translocated
to the ER, where the cellular machinery for such a modifica-
tion is available. However, trypsin sensitivity studies on wild-
type and mutant proteins, discussed above, suggest an impor-
tant structural role for pORF2 glycosylation. Further, the
pORF2 amino-terminal signal sequence and all three N-linked
glycosylation sites are universally found in all isolates of human
HEV as well as in the newly discovered swine HEV. Therefore,
it is likely that pORF2 glycosylation has a functional signifi-
cance as well. It is possible that all or part of the HEV capsid
assembles within the ER. N-linked oligosaccharides are known
to increase the solubility and stability of many proteins and
thus to help in their proper folding (7). That would be critical
for viral capsid assembly, since multiple identical subunits must
come together to form that structure.

While glycosylation of surface proteins is essential for the
assembly of enveloped viruses, little information exists about
the function of carbohydrates on the capsid protein(s) of non-
enveloped viruses. The rotavirus VP7 protein becomes resis-
tant to endo H upon brefeldin A treatment (19), and a com-
bination of tunicamycin and brefeldin A results in misfolding
and interdisulfide bond aggregation of the lumenal VP7 pro-
tein (18). Further, while glycosylated VP7 was found to inter-
act with protein disulfide isomerase, nonglycosylated VP7 did
not. This result is taken to mean that the major function of
carbohydrates on VP7 is to facilitate correct disulfide bond
formation and protein folding (18). It has also been proposed
that capsid glycosylation may render the virus more resistant to
the gastric environment (18). Similar roles may be proposed
for pORF2 glycosylation.

Following proper folding in the ER, N-glycans are also
known to play a role in biosynthetic traffic beyond the ER (4).
However, few studies have differentiated between the effects of
N-glycans on protein folding in the ER and their role in sub-
sequent transport to the plasma membrane. The requirements
for glycosylation appear to be more stringent for membrane
proteins than for secreted proteins. The cell surface expression
of very few plasma membrane proteins, such as pORF2 de-
scribed here, is unaltered by inhibition of glycosylation (4).
However, we need to examine pORF2 transport kinetics quan-
titatively through pulse-chase and cell fractionation studies to
be able to state this finding conclusively.

Another proposed role for N-glycans is sorting signals in
polarized cells. For example, erythropoietin, an apically se-
creted protein in MDCK cells, is discharged equally from the
apical and basolateral surfaces when its three N-glycosylation
sites are removed by mutagenesis (12). Even in nonpolarized
cells such as fibroblasts, the existence of two sorting pathways
analogous to the apical and basolateral routes in MDCK cells
is postulated (15). Because hepatocytes are polarized cells,
newly synthesized HEV particles may exit the cell preferen-
tially from one surface and N-glycosylation of pORF2 may be
a determinant for that selectivity. Clearly, a number of ques-
tions are unanswered; these will be the focus of our future
efforts.

While no in vitro culture system exists for HEV, a primary
infectivity system with hepatocytes from experimentally in-
fected nonhuman primates has recently become available (37).
It will be of interest to develop comparative data by such a
system for the expression and processing of HEV proteins.
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