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FIG. 1. Northern blot analysis of VZV-infected BSC-1 RNA. (A) Total RNA
(20 ng) extracted from control BSC-1 cells (lanes C) and VZV-infected BSC-1
cells (lanes V) along with RNA standards (lane M; Gibco-BRL) was resolved in
1% agarose gels containing 0.5 mM methylmercury(IT) hydroxide and stained
with 0.5 pg of ethidium bromide per ml in 0.5 M ammonium acetate. (B and C)
RNA was transferred to a nylon-based membrane and probed for VZV gene 21
transcripts (B) or B-actin transcripts (C). VZV gene 21 transcripts are visible as
a discrete 3.1-kb band in VZV-infected cell RNA. Both control and VZV-
infected cell RNA contain discrete 1.8-kb B-actin transcripts.

fected cell RNA. Thus, the VZV gene 21 transcript is a single
3.1-kb poly(A)* RNA containing a 3,113-nt ORF bounded by
untranslated regions of 79 nt at the 5’ end and 45 to 52 nt at the
3’ end.
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The VZV gene 21 promoter is silent in uninfected cells. To
investigate the VZV gene 21 promoter, the 284-bp DNA seg-
ment separating ORF 20 and ORF 21 (Fig. 3) was cloned into
the CAT reporter plasmid. Figure 4 shows that in control
BSC-1 cells, the VZV gene 21 promoter induces CAT at levels
beneath detection under the circumstances used. Further, the
function of a VZV-induced protein is required for gene 21
promoter activity.

The VZV gene 21 promoter is transactivated by the protein
encoded by ORF 62 (IE62). Since the VZV gene 21 promoter
is silent in uninfected cells and active during virus infection,
one or more VZV-induced proteins must function to transac-
tivate the gene 21 promoter. The most likely candidates are
VZV IE proteins or the tegument-associated transactivating
protein (encoded by ORF 10). Therefore, we constructed ex-
pression plasmids in which VZV IE protein genes correspond-
ing to ORF 4, 61, 62, and 63, along with ORF 10, were placed
under the control of the CMV IE3 promoter. Western blot
analysis was used to confirm the ability of each construct to
express the respective protein in transient-transfection assays
(data not shown). Figure 5 shows that the VZV gene 21 pro-
moter is silent in uninfected BSC-1 cells or in BSC-1 cells
expressing ORF 4, 10, 61, or 63. However, cotransfection of
BSC-1 cells with the gene 21 promoter-CAT construct with the
OREF 62 expression plasmid transactivated the VZV gene 21
promoter 42-fold more than cotransfection with the gene 21
promoter alone.

5* boundary of the gene 21 promoter. Figure 6 shows the
results of transient transfection of BSC-1 cells with various 5’
truncations of the VZV ORF 20-ORF 21 intergenic region

FIG. 2. Location of the 5 start of RNA transcription for VZV gene 21. Total RNA (5 ug) from either VZV-infected (lanes V) or uninfected (lanes C) BSC-1 cells
was annealed to oligonucleotide primer 21pel, 21pe2, or 21pe3 end labeled with 3?P (Table 1). First-strand cDNA was synthesized, and the extended product was
resolved by gel electrophoresis. The DNA sequence of the Sall C fragment of VZV DNA primed with the respective oligonucleotides was used to size the cDNA
products. The entire gel image as well as an enlargement of the region containing extended products is shown. With all three primers, the cDNA product obtained from
VZV-infected cell RNA (closed arrows in lanes V) terminated at the identical adenosine located at nt 30681 on the VZV genome. Minor extended products obtained
from VZV-infected cell RNA (open arrows in lanes V) were also observed. No product was observed when uninfected cell RNA was used in the cDNA synthesis

reaction (lanes C).
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FIG. 3. Schematic representation of the VZV DNA between ORFs 20 and 21. The VZV genome consists of unique long (U ) and unique short (Ug) segments of
DNA, each bounded by inverted and repeated DNA sequences (TR /IR and IRg/TRg). ORFs 20 and 21 are oriented in opposite directions, and both map within the
Sall C fragment (positions 23454 to 35936) within the U, . The 284-bp DNA segment separating ORFs 20 and 21 contains one potential IE62 binding site and three
TATAA-like boxes. The 5’ start site of gene 21 transcription is located at nt 30681, and the 3’ end of the transcript has been mapped to nt 33888 and nt 33895 (7, 10).
The boundary of the CAT reporter constructs used to locate the VZV gene 21 promoter are shown.

inserted into the CAT reporter plasmid. Inspection of the ORF
20-ORF 21 intergenic region indicates the presence of three
TATAA-like boxes. The plasmids were constructed to eliminate
successively these putative transcriptional regulatory elements. To
determine if transcriptional regulatory elements exist upstream of
the ORF 20-ORF 21 intergenic region that controls expression of
gene 21, a further CAT construct that extended 496 bp into the 5’
end of ORF 20 was made (p21Z-CAT). Since we had determined
that IE62 is required for gene 21 promoter activity, all transfec-
tions included the IE62 expression vector. The CAT activity of
p21Z-CAT was similar to that of p21-CAT, indicating that the
VZV gene 21 promoter is contained entirely within the segment
of DNA spanning ORFs 20 and 21. Deletion of the 111 bp from
position 30475 to position 30585 had little effect on VZV gene 21
promoter activity and reduced CAT activity only from 90.6 to
80.8%. Deletion of the 152 bp from position 30475 to position
30626, however, had a marked effect on VZV gene 21 promoter
function and reduced its activity to background levels. Further 5’
truncations of the VZV gene 21 promoter also resulted in back-
ground CAT activities. These results indicate that the 5" boundary
of the gene 21 promoter regulatory region of the VZV gene 21
promoter lies between nt 30585 and nt 30626. Since this region
contains a TATAA box that could direct the 5" start of transcrip-
tion, plasmid p21A, which consists of the DNA segment from nt
30475 to nt 30597 inserted into the CAT reporter plasmid, was
constructed. In transient-cotransfection assays, p21A demon-
strated no CAT gene translation products in the presence of IE62
(Fig. 6), indicating a lack of promoter activity.

DISCUSSION

VZV gene 21 consists of a 3,113-nt ORF bounded by a 5’
untranslated region of 79 nt and by a 3" untranslated region of
45 to 52 nt. During productive infection in tissue culture, VZV
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FIG. 4. The VZV gene 21 promoter is silent in uninfected cells. The 284-bp
VZV DNA segment separating ORFs 20 and 21 was inserted into the CAT
reporter plasmid and used to transfect either uninfected cells (lane 2) or VZV-
infected cells (lane 4). Controls included the CAT reporter plasmid lacking a
promoter transfected into uninfected cells (lane 1) or VZV-infected cells (lane
3) and a CMV IE promoter driving CAT transfected into uninfected cells (lane
5). CAT assays were performed in duplicate, and the average acetylation of
chloramphenicol (%CAT) showed that the VZV gene 21 promoter does not
function in uninfected cells (—VZV) but is active in VZV-infected cells
(+VZV). The amount of promoter activity in infected cells above that in unin-
fected cells (fold) showed that gene 21 promoter activity was approximately
650-fold higher in VZV-infected cells than in uninfected cells.
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FIG. 5. The VZV gene 21 promoter is transactivated by IE62. CAT reporter
plasmids, either promoterless (lane 1) or containing the 284-bp VZV ORF
20-ORF 21 intergenic region (lanes 2 to 7) or the CMV IE promoter (lane 8),
were transfected into cells either alone (lanes 1, 2, and 8) or with plasmids
expressing various VZV transactivators (ORFs 4, 10, 61, 62, and 63) (lanes 3 to
7). Duplicate CAT assays indicated that the VZV gene 21 promoter is transac-
tivated by VZV IE62 but not by the proteins encoded by VZV genes 4, 10, 61,
and 63. Transactivation of VZV gene 21 promoter by IE62 is ~42-fold higher
than VZV gene 21 promoter activity in the absence of IE62. %CAT, average
percent chloramphenicol acetylation; sd, standard deviation.

gene 21 transcripts appear as a single, discrete 3.1-kb band on
denaturing agarose gels. We produced antibodies in rabbits
directed against VZV gene 21-glutathione S-transferase fusion
proteins and located gene 21 protein predominantly in the
cytoplasm as well as in the nucleus of productively infected
cells (29a). Although the protein encoded by VZV gene 21 has
not been studied, it is homologous (47%) to HSV-1 UL37 (40),
a 120-kDa phosphoprotein synthesized after the onset of virus
DNA replication (1). In HSV-1-infected cells, UL37 is both
cytoplasmic and nuclear and incorporates into the tegument of
progeny virions (31, 38). HSV-1 UL37 and ICP8 (the VZV
gene 29 product homolog) form a DNA-binding complex (39,
40).

During VZV latency, polyadenylated transcripts mapping to
VZV gene 21 are present in human trigeminal ganglia (9, 12).
While no animal model of VZV latency and reactivation cur-
rently exists, simian varicella virus (SVV) infection in monkeys
closely mimics VZV infection in humans (18), and polyadenyl-
ated transcripts corresponding to the SVV homolog of VZV
gene 21 have been demonstrated in monkey ganglia latently
infected with SVV (7).

The consistent detection of VZV gene 21 transcripts in la-
tently infected human ganglia (9, 10, 12) and its SVV homolog
in latently infected monkey ganglia (7) suggests that VZV gene
21 is vital to the maintenance of varicella latency or that its
transcription is constitutive because cellular transcription fac-
tors recognize the promoter. We have identified the VZV gene
21 promoter and have shown that it is silent in uninfected cells,
indicating that its activity depends upon a virus-induced pro-
tein. We have further identified IE62 as the virus protein
capable of transactivating the VZV gene 21 promoter. Along
with VZV gene 21 transcripts, polyadenylated transcripts map-
ping to ORF 29 have been detected in latently infected human
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FIG. 6. 5" boundary of the gene 21 promoter. Duplicate CAT assays were
performed on extracts of uninfected cells that had been transfected with CAT
reporter constructs containing either the entire 284-bp DNA segment separating
OREF 20 and ORF 21 (p21), a 496-bp extension (p21Z), or various 5’ truncation
mutations (p21A, p21B, p21C, and p21A) in the presence of the IE62 expression
plasmid. The 5" boundary of the gene 21 promoter was located to a region
between nt 30585 (p21A) and nt 30626 (p21B). %CAT, average percent chlor-
amphenicol acetylation; sd, standard deviation.

ganglia (9, 32). Like the promoter for VZV gene 21, the VZV
gene 29 promoter is silent in uninfected cells but is transacti-
vated by VZV IE62 (33, 34). VZV IE62 is a promiscuous
transactivator that recognizes numerous VZV, HSV-1, human
immunodeficiency virus, and cellular promoters (22, 23, 36).
VZV IE62 DNA binding has been located to a nonpalindromic
pentamer, ATCGT, and inspection of the VZV gene 21 pro-
moter region shows this potential binding site for region II of
IE62 (4, 41, 42). However, deletion of the potential IE62 bind-
ing site did not diminish the transactivation of gene 21 pro-
moter by IE62. VZV IE62 transactivation has also been asso-
ciated with the ubiquitously present cellular transcription
factor USF (34). However, the minimal VZV gene 21 pro-
moter domain responsive to IE62 transactivation lacks the
consensus USF DNA binding sequence CACGTG. Thus, the
promoter for gene 21 may unlock a novel mechanism by which
IE62 maintains gene regulation.
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