










FIG. 4. Electron microscopy of cells expressing the MA basic patch mutant PB4 (2). Cells were harvested and fixed at 48 h posttransfection in 2.5% glutaraldehyde–
300 mM sodium cacodylate buffer (pH 7.4). Sections were prepared and cut as previously described (15) and examined with a Philips CM12 microscope. (A)
Extracellular budding of wild-type (pHIT60) particles. Magnification, 3108,000. (B) Intracellular accumulation of proteins in cells expressing the PB4 (2) mutant.
Magnification, 341,000. (C) Accumulation of proteins at the endoplasmic reticulum in cells expressing the PB4 (2) mutant. Magnification, 384,000. (D) Formation
of intracellular virus-like particles in cells expressing the PB4 (2) mutant. Magnification, 384,000.
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protein were chosen to test for functional analogies. In partic-
ular, regions which may be involved in interaction with the
phospholipid head groups of the plasma membrane or the viral
envelope glycoproteins were examined. We have constructed

21 matrix protein mutants to address these two issues and have
analyzed them by using a replication-defective retroviral sys-
tem that we have developed previously (41).

In the first instance, we sought to determine the significance

FIG. 4—Continued.
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of six positively charged residues clustered at the N terminus of
the Mo-MuLV matrix protein. In analyzing the role of the
cluster of basic residues, we made incremental changes to this
region. Interestingly, substitution of one basic residue had little
effect on virus production (Table 1, PB1). A recent report also
suggested that single changes to the basic residues of the Mo-
MuLV matrix protein do not affect normal function of the
protein (12). However, with each additional change of a pos-
itively charged residue to a neutral residue, we observed that
the virus titer decreased (Table 1, PB1, PB2, PB4, and PB6). A
very similar effect was seen with the HIV-1 matrix protein
when deletions or substitution mutations were made in the
N-terminal polybasic region (46). When only three basic resi-
dues were replaced by acidic residues, no significant change in
virus phenotype was observed. When the substitutions or de-
letions affected more than three basic residues, virus produc-
tion was abolished and proteins accumulated in the cytoplasm.
The gradual decrease in virus titer with increased substitutions
suggests that the extent of membrane association may be pro-
portional to the net positive charge in the basic patch region, as
has been shown for several proteins, including the Ras protein
(13) and the Src protein (40). In fact, the most significant effect
on Mo-MuLV production was seen when the net charge be-
tween residues 31 and 34 of MA was changed to negative
[Table 1, PB4 (2)]. It is known that phosphorylation of pro-
teins, such as the MARCKS protein (20), can cause electro-
static repulsion from the acidic phospholipids of the plasma

membrane by decreasing the membrane-binding energy and
can cause the protein to become released from the plasma
membrane. The incorporation of acidic amino acids in the
polybasic region of the Mo-MuLV matrix protein most likely
had the same effect. Also for this MA basic patch mutant, PB4
(2), immunofluorescence analysis showed that the mutant gag
protein did not localize at the plasma membrane but localized
in the cytoplasm in a punctate manner (data not shown), de-
spite proper myristylation (Fig. 3). Previous studies have sug-
gested that MuLV gag proteins travel to the plasma membrane
via vesicular transport by association with the cytoplasmic face
of intracellular vesicles (14, 17). It was therefore possible that
the punctate staining pattern observed in cells expressing the
PB4 (2) mutant (data not shown) was due to mutant gag
proteins localizing at intracellular membranes. Subcellular
fractionation results supported this speculation, as much of the
mutant gag proteins was isolated in the membrane fraction
(data not shown) and analysis of cells by electron microscopy
techniques showed large amounts of dense protein accumulat-
ing at the endoplasmic reticulum when cells were transfected
with the mutant construct (Fig. 4B and C). Assembly into
virus-like particles was also detected in the cytoplasm (Fig.
4D), but no extracellular budding could be seen, suggesting
that the mutant particles were impaired in transport to the
membrane as a result of the mutations made in the N-terminal
basic residues.

The structure of the HIV-1 matrix protein (22, 23) showed
that the basic residues lie in a b-sheet, and therefore, muta-
tions were also introduced in the Mo-MuLV MA where
b-strands were predicted to form (Fig. 1). Mutations in the
predicted regions had no significant effect, except for the lysine
residue at position 65, which caused a slightly reduced virus
titer and RT activity compared to the wild type (Table 1). This
additional charge may be brought into close proximity to the

FIG. 5. Western blot analysis of mutant proteins and virus particles of the
hydrophobic matrix mutants. 293T cells were transfected with pHIT123,
pHIT111, and pHIT60 (lanes 1) or the gag-pol expression plasmid containing the
MA mutation V5D (lanes 2), T6D (lanes 3), L11D (lanes 4), W35R (lanes 5),
S40D (lanes 6), W43R (lanes 7), P44H (lanes 8), T45D (lanes 9), F46H (lanes
10), or W50H (lanes 11). Untransfected cells served as a negative control (lanes
12). Cell extracts were immunoblotted with an anti-p12 gag F548 monoclonal
antibody (A) and an anti-RLV gp69/71 env antibody (B). Viral supernatants were
harvested, pelleted, and immunoblotted with an anti-p15 gag antibody raised in
rabbit (C) and an anti-RLV gp69/71 env antibody (D).

FIG. 6. Myristylated MuLV-specific gag proteins from cells expressing N-
terminal and tryptophan mutants. 293T cells were transfected and labelled with
500 mCi of [3H]myristic acid (NEN Research Products) per ml for 20 h. Cell
lysates were immunoprecipitated with a monoclonal anti-p12 gag F548 antibody,
and the same amount of protein from each sample was loaded onto an SDS–
12.5% polyacrylamide gel. The dried gel was exposed to presensitized film. (A)
Myristylated gag products from cells transfected with pHIT60 (lane 1) or the
gag-pol expression plasmid containing the V5D mutation (lane 2) or the T6D
mutation (lane 3). Cells expressing the G2A mutant (lane 4) and untransfected
cells (lane 5) served as negative controls. (B) Myristylated gag products from cells
transfected with pHIT60 (lane 1) or the gag-pol expression plasmid containing
the W35R mutation (lane 2), the W43R mutation (lane 3), or the W50H muta-
tion (lane 4). Cells expressing the G2A mutant (lane 5) and untransfected cells
(lane 6) again served as negative controls.
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plasma membrane by the folding of the region into a b-sheet, to
contribute to the electrostatic attraction between the matrix pro-
tein and the phospholipids of the membrane. Clearly, confirma-
tion of this notion awaits structural analysis of the matrix protein.

We next focused on identifying regions of interaction be-

tween the matrix protein and the envelope glycoproteins, and
we chose hydrophobic stretches immediately before and after
the polybasic region, mainly because we speculated that if a
direct interaction exists, it would occur between the mem-
brane-spanning domain of the envelope protein and a mem-

FIG. 7. Intracellular distribution of the tryptophan mutants determined by indirect immunofluorescence. Cells transfected with pHIT60 (A) or the gag-pol
expression plasmid containing the W35R mutation (B), the W43R mutation (C), the W50H mutation (D), or untransfected cells (E) were fixed in 3% paraformaldehyde
and permeabilized with 1% Triton X-100 at 48 h posttransfection. The primary antibody was a monoclonal anti-p12 gag F548 antibody, and the secondary antibody was
a fluorescein-conjugated anti-mouse immunoglobulin. Cells were observed under a 1003 oil immersion objective with a Zeiss Axiovert microscope.
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brane-penetrating region of the matrix protein. Our assump-
tions were based on reports that the cytoplasmic tail of the
envelope protein is dispensable for envelope incorporation
(29, 31). Mutations of the chosen hydrophobic residues failed
to produce virus particles with a reduction in envelope incor-
poration. This was not surprising, however, because a previous
study reported that replacement of the transmembrane do-
main of the MuLV envelope protein with a glycosylphosphati-
dylinositol membrane anchor did not affect envelope incorpo-
ration into virions (30), suggesting that all or part of the
membrane-spanning region and the cytoplasmic tail may be
dispensable for envelope incorporation. More recently, swap-
ping of the transmembrane domains of the MuLV and human
T-cell leukemia virus type 1 envelope proteins demonstrated
that all of the membrane-anchoring domain and the cytoplas-
mic tail of MuLV may not be required for envelope incorpo-
ration (2). We were also unable to find any mutations in the
hydrophobic region of the matrix protein that reduced enve-
lope incorporation, further supporting the notion that a spe-
cific single interaction may not exist.

During our search for envelope-interacting regions, we have
discovered that the fifth and sixth amino acids of the Mo-
MuLV matrix protein are important for proper myristylation
(Fig. 6A), and this is in agreement with the requirements for
myristylation of the closely related Akv MuLV matrix protein
(18). Surprisingly, the PB6 mutation, which affected six basic
residues, with the first mutation occurring at position 17 (Fig.
1), prevented complete myristylation of the gag proteins (Fig.
3, lane 2). Short stretches of amino acids following the myri-
stylation site have been known to influence myristylation (19,
28), but involvement of residues further downstream was not
expected. Mutations affecting 20 amino acids downstream
from the N terminus of the HIV-1 matrix protein also ap-
peared to cause a reduction in myristylation (46). It is possible
that these mutations affected the three-dimensional structures
of the proteins and prevented the exposure of the N-terminal
region for myristylation.

We have also found that mutation of tryptophan residues
completely abrogated virus production (Table 1). All three
tryptophan mutants clearly showed a cellular localization dif-
ferent from that of the wild type (Fig. 7), suggesting that
tryptophan residues may play an important role in intracellular
transport of gag proteins. However, it is also possible that
improper folding of the mutant gag proteins could obscure the
myristyl group or the N-terminal basic patch, rendering the two
regions unavailable for interaction with the plasma membrane.

All retroviral matrix proteins appear to play similar roles in
the retrovirus life cycle, particularly in virus assembly. Despite
the lack of sequence homology between the lentiviral and type
C retroviral matrix proteins, they seem to possess functionally
homologous regions, as evidenced by mutagenesis analysis of
the polybasic region. However, there are clearly differences, as
demonstrated by our inability to use the HIV model to identify
residues involved in envelope retention. Further understand-
ing of the functions of the matrix protein would be greatly
enhanced by structural information, and towards this end, we
have recently produced crystals of the protein. It remains to be
seen whether the matrix proteins of all retroviruses are struc-
turally similar.
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