






FIG. 2. Immunofluorescence staining of gK in HSV-1-infected gK-9 cells. gK-9 cells were infected with HSV-1 (F-gEb) at 30 PFU per cell, and after 12 h the cells
were fixed with 2% paraformaldehyde and then some monolayers were permeabilized with 0.2% Triton X-100 for 5 min (A, C, E, G, and I), while others were not
permeabilized (B, D, F, H, and J). The cells were incubated with individual antisera directed against the UL53-1 peptide (A and B), the UL53-3 peptide (C and D),
or the UL53-4 peptide (E and F) or with anti-gD antiserum (G and H) or preimmune serum (I and J). The cells were washed, incubated with fluorescein-conjugated
goat anti-rabbit IgG antibodies, washed again, and then mounted on glass slides.
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FIG. 3. gK is restricted to the perinuclear region of cells infected with HSV-1 syncytial mutants. Vero cell monolayers growing on glass coverslips were infected with
HSV-1 strain MP at 30 PFU per cell, and 13 h later the cells were fixed with 4% paraformaldehyde for 15 min. Cells were permeabilized with 0.2% Triton X-100 (A,
C, and E) or were not permeabilized (B, D, and F). The cells were incubated with a mixture of rabbit anti-UL53-1 and anti-UL53-4 sera (A and B), rabbit anti-gD serum
(C and D), or preimmune sera (E and F) and then washed and incubated with fluorescein-conjugated goat anti-rabbit IgG. Coverslips were washed, mounted on slides,
and fluorescence photographed.
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17). Similarly, gK expressed at much higher levels in gK-9 cells
did not become endo H resistant and syncytial forms of gK
remained endo H sensitive (not shown).
Conclusions. The results presented here support the conclu-

sion that HSV-1 gK is retained in the nuclear envelope and ER
in HSV-infected cells. Immunofluorescence staining with three
different gK-specific antipeptide sera demonstrated that gK
accumulates in perinuclear and nuclear membranes of HSV-
infected Vero cells. Moreover, gK could not be detected on the
surfaces of HSV-infected cells, a result which distinguishes gK
from all other HSV glycoproteins studied to date (1, 16, 18, 20,
23, 27–31, 45, 53). gK expressed by using a recombinant ade-
novirus vector was restricted to perinuclear and nuclear mem-
branes, supporting the conclusion that other HSV proteins are
not required for intracellular retention of gK. In addition, gK
produced by syncytial HSV-1 did not reach the cell surface.
Supporting the hypothesis that gK does not leave the pe-

rinuclear compartment of cells, gK oligosaccharides remained
entirely endo H sensitive. This result supports the immunoflu-
orescence data and suggests that gK does not reach the medial
Golgi. It should be noted that the mature form of HSV-1 gB
also contains a fraction of N-linked oligosaccharides which
remains sensitive to endo H, though other gB oligosaccharides

acquire endo H resistance (32, 55) and the other HSV glyco-
proteins characterized to date become predominantly endo H
resistant (1, 32, 45, 51). We know of no example of a herpes-
virus glycoprotein which reaches the cell surface without oli-
gosaccharide processing in the Golgi apparatus. gK does not
possess obvious ER retention motifs previously identified in
type I and type II membrane proteins or the KDEL/HDEL
retention motif of ER luminal proteins (reviewed in reference
49).
There is ample evidence that mutations in gK produce strik-

ing effects in cells, causing extensive cell fusion within 4 to 6 h
after HSV infection (40). These observations have suggested
that gK plays a central role in regulating fusion of infected cells
and, perhaps, fusion of the virion envelope with cellular mem-
branes during the process of virus entry into cells. Several
models have been put forward to explain the effects of gK
mutations on infected cells, though none of these models have
been confirmed experimentally. It has been proposed that gK
(i) possesses an innate fusion-inducing activity which is trig-
gered by mutations in the protein, (ii) catalyzes or indirectly
influences a process which controls or regulates the functions
of viral fusion proteins, (iii) interacts with components of the
fusion complex in the plasma membrane and virion envelope

FIG. 4. Immunofluorescence staining of cells infected with AdgK, an adenovirus vector expressing gK. Vero cells growing on glass coverslips were infected with
AdgK (A and B) or AddlE3 (C and D) at 1,000 PFU per cell. At 27 h after infection, the cells were fixed with 4% paraformaldehyde for 15 min. Cells were permeabilized
with 0.2% Triton X-100 (A and C) or not permeabilized (B and D); then they were incubated with a mixture of anti-UL53-1 and anti-UL53-4 sera. The cells were washed
and incubated with fluorescein-conjugated goat anti-rabbit IgG serum. The coverslips were washed and mounted on glass slides.
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to regulate fusion, or (iv) influences cell surface transport of
the HSV or host cell proteins which affect cell-cell fusion (5,
25, 26, 35, 38, 44, 47, 51, 52). The results presented here rule
out a number of these possibilities because gK is not present in
the plasma membrane and, therefore, it is unlikely that it plays
a direct role in fusion of cells. Moreover, the small quantities
of gK expressed in HSV-infected cells relative to other glyco-
proteins involved in cell-cell fusion is more consistent with a
regulatory role for gK. It is also unlikely that gK is associated
with mature virus particles at the cell surface, because we could
not detect gK at the cell surface by immunofluorescence (Fig.
1). In addition, we have been unable to detect gK labelled with
either [35S]methionine and [35S]cysteine or 125I in virus parti-
cles purified from the medium of infected cells (not shown),
although a previous communication (24) indicated incorrectly
that we had done so. If gK is not part of the virus particle, it
appears unlikely that it participates directly in fusion of the
virion envelope during entry.
Therefore, gK is an unusual HSV glycoprotein that accumu-

lates in cytoplasmic membranes, the ER, and the nuclear en-
velope and does not reach the cell surface. We have recently
constructed an HSV-1 mutant unable to express gK, and this
mutant is unable to produce infectious viruses; instead, viruses
accumulate within intracellular membranes (26). The pheno-
type of the mutant is consistent with the internal localization of
gK observed here, and the results demonstrate that gK is
essential for virus replication.
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