Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Virus-Cell Interactions | Spotlight

Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis

Lizhou Zhang, Audrey S. Richard, Cody B. Jackson, Amrita Ojha, Hyeryun Choe
Rebecca Ellis Dutch, Editor
Lizhou Zhang
aDepartment of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Audrey S. Richard
aDepartment of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cody B. Jackson
aDepartment of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amrita Ojha
aDepartment of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hyeryun Choe
aDepartment of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rebecca Ellis Dutch
University of Kentucky College of Medicine
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.02079-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Phosphatidylserine (PS) receptors mediate clearance of apoptotic cells—efferocytosis—by recognizing the PS exposed on those cells. They also mediate the entry of enveloped viruses by binding PS in the virion membrane. Here, we show that phosphatidylethanolamine (PE) synergizes with PS to enhance PS receptor-mediated efferocytosis and virus entry. The presence of PE on the same surface as PS dramatically enhances recognition of PS by PS-binding proteins such as GAS6, PROS, and TIM1. Liposomes containing both PE and PS bound to GAS6 and were engulfed by AXL-expressing cells much more efficiently than those containing PS alone. Further, infection of AXL-expressing cells by infectious Zika virus or Ebola, Chikungunya, or eastern equine encephalitis pseudoviruses was inhibited with greater efficiency by the liposomes containing both PS and PE compared to a mixture of liposomes separately composed of PS and PE. These data demonstrate that simultaneous recognition of PE and PS maximizes PS receptor-mediated virus entry and efferocytosis and underscore the important contribution of PE in these major biological processes.

IMPORTANCE Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are usually sequestered to the inner leaflet of the plasma membrane of the healthy eukaryotic cells. During apoptosis, these phospholipids move to the cell’s outer leaflet where they are recognized by so-called PS receptors on surveilling phagocytes. Several pathogenic families of enveloped viruses hijack these PS receptors to gain entry into their target cells. Here, we show that efficiency of these processes is enhanced, namely, PE synergizes with PS to promote PS receptor-mediated virus infection and clearance of apoptotic cells. These findings deepen our understanding of how these fundamental biological processes are executed.

  • Copyright © 2020 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis
Lizhou Zhang, Audrey S. Richard, Cody B. Jackson, Amrita Ojha, Hyeryun Choe
Journal of Virology Dec 2020, 95 (2) e02079-20; DOI: 10.1128/JVI.02079-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis
Lizhou Zhang, Audrey S. Richard, Cody B. Jackson, Amrita Ojha, Hyeryun Choe
Journal of Virology Dec 2020, 95 (2) e02079-20; DOI: 10.1128/JVI.02079-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • APPENDIX
    • ACKNOWLEDGMENT
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

chikungunya virus
Ebola virus
phosphatidylserine
Zika virus
Eastern equine encephalitis virus
efferocytosis
liposome
phosphatidylethanolamine
synergy

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514