Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Pathogenesis and Immunity

HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness

Robert van Domselaar, Duncan T. Njenda, Rohit Rao, Anders Sönnerborg, Kamalendra Singh, Ujjwal Neogi
Viviana Simon, Editor
Robert van Domselaar
aDivision of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Duncan T. Njenda
bDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
cDivision of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rohit Rao
dMolecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anders Sönnerborg
aDivision of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
bDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
dMolecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
eDepartment of Clinical Microbiology and Infectious Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kamalendra Singh
bDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
dMolecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ujjwal Neogi
bDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ujjwal Neogi
Viviana Simon
Icahn School of Medicine at Mount Sinai
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.00077-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Human immunodeficiency virus type 1 subtype C (HIV-1C) has a natural deletion of a YPxL motif in its Gag-p6 late domain. This domain mediates the binding of Gag to host cell protein ALIX and subsequently facilitates viral budding. In a subset of HIV-1C-infected individuals, the tetrapeptide insertion PYxE has been identified at the deleted YPxL motif site. Here, we report the consequences of PYxE insertion on the interaction with ALIX and the relevance regarding replication fitness and drug sensitivity. In our three HIV-1C cohorts, PYKE and PYQE were most prevalent among PYxE variants. Through in silico predictions and in vitro experiments, we showed that HIV-1C Gag has an increased binding to ALIX when the PYxE motif is present. To go more into the clinical relevance of the PYxE insertion, we obtained patient-derived gag-pol sequences from HIV-1CPYxEi viruses and inserted them in a reference HIV-1 sequence. Viral growth was increased, and the sensitivity to the protease inhibitor (PI) lopinavir (LPV) and nucleoside reverse transcriptase inhibitor tenofovir alafenamide (TAF) was decreased for some of the HIV-1C PYxE variants compared to that of wild-type variants. Our data suggest that PYxE insertion in Gag restores the ability of Gag to bind ALIX and correlates with enhanced viral fitness in the absence or presence of LPV and TAF. The high prevalence and increased replication fitness of the HIV-1C virus with PYxE insertion indicates the clinical importance of these viral variants.

IMPORTANCE Genomic differences within HIV-1 subtypes is associated with various degrees of viral spread, disease progression, and clinical outcome. Viral budding is essential in the HIV-1 life cycle and mainly mediated through the interaction of Gag with host proteins. Two motifs within Gag-p6 mediate binding of host cell proteins and facilitate budding. HIV-1C has a natural deletion of one of these two motifs, resulting in an inability to bind to host cell protein ALIX. Previously, we have identified a tetrapeptide (PYxE) insertion at this deleted motif site in a subset of HIV-1C patients. Here, we report the incidence of PYxE insertions in three different HIV-1C cohorts, and the insertion restores the binding of Gag to ALIX. It also increases viral growth even in the presence of the antiretroviral drugs lopinavir and tenofovir alafenamide. Hence, PYxE insertion in HIV-1C might be biologically relevant for viruses and clinically significant among patients.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness
Robert van Domselaar, Duncan T. Njenda, Rohit Rao, Anders Sönnerborg, Kamalendra Singh, Ujjwal Neogi
Journal of Virology Apr 2019, 93 (9) e00077-19; DOI: 10.1128/JVI.00077-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness
Robert van Domselaar, Duncan T. Njenda, Rohit Rao, Anders Sönnerborg, Kamalendra Singh, Ujjwal Neogi
Journal of Virology Apr 2019, 93 (9) e00077-19; DOI: 10.1128/JVI.00077-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

ALIX
Gag
HIV-1
pathogenesis

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514