Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Virus-Cell Interactions

Polyamine Depletion Abrogates Enterovirus Cellular Attachment

Thomas M. Kicmal, Patrick M. Tate, Courtney N. Dial, Jeremy J. Esin, Bryan C. Mounce
Julie K. Pfeiffer, Editor
Thomas M. Kicmal
aDepartment of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
bInfectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick M. Tate
aDepartment of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Courtney N. Dial
aDepartment of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
bInfectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Courtney N. Dial
Jeremy J. Esin
aDepartment of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
bInfectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bryan C. Mounce
aDepartment of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
bInfectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bryan C. Mounce
Julie K. Pfeiffer
University of Texas Southwestern Medical Center
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.01054-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Polyamines are small polycationic molecules with flexible carbon chains that are found in all eukaryotic cells. Polyamines are involved in the regulation of many host processes and have been shown to be implicated in viral replication. Depletion of polyamine pools in cells treated with FDA-approved drugs restricts replication of diverse RNA viruses. Viruses can exploit host polyamines to facilitate nucleic acid packaging, transcription, and translation, but other mechanisms remain largely unknown. Picornaviruses, including Coxsackievirus B3 (CVB3), are sensitive to the depletion of polyamines and remain a significant public health threat. We employed CVB3 as a model system to investigate a potential proviral role for polyamines using a forward screen. Passaging CVB3 in polyamine-depleted cells generated a mutation in capsid protein VP3 at residue 234. We show that this mutation confers resistance to polyamine depletion. Through attachment assays, we demonstrate that polyamine depletion limits CVB3 attachment to susceptible cells, which is rescued by incubating virus with polyamines. Furthermore, the capsid mutant rescues this inhibition in polyamine-depleted cells. More divergent viruses also exhibited reduced attachment to polyamine-depleted cells, suggesting that polyamines may facilitate attachment of diverse RNA viruses. These studies inform additional mechanisms of action for polyamine-depleting pharmaceuticals, with implications for potential antiviral therapies.

IMPORTANCE Enteroviruses are significant human pathogens that can cause severe disease. These viruses rely on polyamines, small positively charged molecules, for robust replication, and polyamine depletion limits infection in vitro and in vivo. The mechanisms by which polyamines enhance enteroviral replication are unknown. Here, we describe how Coxsackievirus B3 (CVB3) utilizes polyamines to attach to susceptible cells and initiate infection. Using a forward genetic screen, we identified a mutation in a receptor-binding amino acid that promotes infection of polyamine-depleted cells. These data suggest that pharmacologically inhibiting polyamine biosynthesis may combat virus infection by preventing virus attachment to susceptible cells.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Polyamine Depletion Abrogates Enterovirus Cellular Attachment
Thomas M. Kicmal, Patrick M. Tate, Courtney N. Dial, Jeremy J. Esin, Bryan C. Mounce
Journal of Virology Sep 2019, 93 (20) e01054-19; DOI: 10.1128/JVI.01054-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Polyamine Depletion Abrogates Enterovirus Cellular Attachment
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Polyamine Depletion Abrogates Enterovirus Cellular Attachment
Thomas M. Kicmal, Patrick M. Tate, Courtney N. Dial, Jeremy J. Esin, Bryan C. Mounce
Journal of Virology Sep 2019, 93 (20) e01054-19; DOI: 10.1128/JVI.01054-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

attachment
cell binding
enteroviruses
polyamines

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514