Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Vaccines and Antiviral Agents

Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11

Thandeka Moyo, June Ereño-Orbea, Rajesh Abraham Jacob, Clara E. Pavillet, Samuel Mundia Kariuki, Emily N. Tangie, Jean-Philippe Julien, Jeffrey R. Dorfman
Guido Silvestri, Editor
Thandeka Moyo
aDivision of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
June Ereño-Orbea
bProgram in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajesh Abraham Jacob
aDivision of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
cInternational Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clara E. Pavillet
bProgram in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
dDepartment of Biochemistry, University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samuel Mundia Kariuki
aDivision of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
cInternational Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
eDepartment of Biological Science, University of Eldoret, Eldoret, Kenya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emily N. Tangie
aDivision of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
cInternational Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Philippe Julien
bProgram in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
dDepartment of Biochemistry, University of Toronto, Toronto, Ontario, Canada
fDepartment of Immunology, University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey R. Dorfman
aDivision of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
gDivision of Immunology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeffrey R. Dorfman
Guido Silvestri
Emory University
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.02261-17
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Understanding the mechanisms used by HIV-1 to evade antibody neutralization may contribute to the design of a high-coverage vaccine. The tier 3 virus 253-11 is poorly neutralized by subtype-matched and subtype C sera, even compared to other tier 3 viruses, and is also recognized poorly by V3/glycan-targeting monoclonal antibodies (MAbs). We found that sequence polymorphisms in the V3 loop and N-linked glycosylation sites contribute only minimally to the high neutralization resistance of 253-11. Interestingly, the 253-11 membrane-proximal external region (MPER) is rarely recognized by sera in the context of the wild-type virus but is commonly recognized in the context of an HIV-2 chimera, suggesting steric or kinetic hindrance of binding to MPER in the native envelope (Env). Mutations in the 253-11 MPER, which were previously reported to increase the lifetime of the prefusion Env conformation, affected the resistance of 253-11 to antibodies targeting various epitopes on HIV-1 Env, presumably destabilizing its otherwise stable, closed trimer structure. To gain insight into the structure of 253-11, we constructed and crystallized a recombinant 253-11 SOSIP trimer. The resulting structure revealed that the heptad repeat helices in gp41 are drawn in close proximity to the trimer axis and that gp120 protomers also showed a relatively compact disposition around the trimer axis. These observations give substantial insight into the molecular features of an envelope spike from a tier 3 virus and into possible mechanisms that may contribute to its unusually high neutralization resistance.

IMPORTANCE HIV-1 isolates that are highly resistant to broadly neutralizing antibodies could limit the efficacy of an antibody-based vaccine. We studied 253-11, which is highly resistant to commonly elicited neutralizing antibodies. To further understand its resistance, we made mutations that are known to delay fusion and thus increase the time that the virus spends in the open conformation following CD4 binding. Interestingly, we found that these mutations affect the 253-11 envelope (Env) spike before CD4 binding, presumably by destabilizing the trimer structure. To gain further information about the structure of the 253-11 Env trimer, we generated a recombinant 253-11 SOSIP trimer. The crystal structure of the SOSIP trimer revealed that the gp41 helices and the gp120 protomers were drawn in toward the center of the molecule compared to most solved HIV-1 Env structures. These observations provide insight into the distinct molecular features of a tier 3 envelope spike.

  • Copyright © 2018 American Society for Microbiology.

All Rights Reserved.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11
Thandeka Moyo, June Ereño-Orbea, Rajesh Abraham Jacob, Clara E. Pavillet, Samuel Mundia Kariuki, Emily N. Tangie, Jean-Philippe Julien, Jeffrey R. Dorfman
Journal of Virology Jun 2018, 92 (14) e02261-17; DOI: 10.1128/JVI.02261-17

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Molecular Basis of Unusually High Neutralization Resistance in Tier 3 HIV-1 Strain 253-11
Thandeka Moyo, June Ereño-Orbea, Rajesh Abraham Jacob, Clara E. Pavillet, Samuel Mundia Kariuki, Emily N. Tangie, Jean-Philippe Julien, Jeffrey R. Dorfman
Journal of Virology Jun 2018, 92 (14) e02261-17; DOI: 10.1128/JVI.02261-17
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

HIV-1
HIV-1 vaccine
antibody
neutralization

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514