Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Pathogenesis and Immunity

Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis

Claudia N. Detje, Stefan Lienenklaus, Chintan Chhatbar, Julia Spanier, Chittappen K. Prajeeth, Claudia Soldner, Michael G. Tovey, Dirk Schlüter, Siegfried Weiss, Martin Stangel, Ulrich Kalinke
D. S. Lyles, Editor
Claudia N. Detje
aInstitute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Lienenklaus
bMolecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chintan Chhatbar
aInstitute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia Spanier
aInstitute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chittappen K. Prajeeth
cClinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claudia Soldner
aInstitute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael G. Tovey
dLaboratory of Biotechnology Applied Pharmacology, École Normale Supérieure de Cachan, Cachan Cedex, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dirk Schlüter
eInstitute for Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
fOrgan-Specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Siegfried Weiss
bMolecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Stangel
cClinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ulrich Kalinke
aInstitute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. S. Lyles
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.02044-14
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Previously we found that following intranasal (i.n.) infection with neurotropic vesicular stomatitis virus (VSV) type I interferon receptor (IFNAR) triggering of neuroectodermal cells was critically required to constrain intracerebral virus spread. To address whether locally active IFN-β was induced proximally, we studied spatiotemporal conditions of VSV-mediated IFN-β induction. To this end, we performed infection studies with IFN-β reporter mice. One day after intravenous (i.v.) VSV infection, luciferase induction was detected in lymph nodes. Upon i.n. infection, luciferase induction was discovered at similar sites with delayed kinetics, whereas on days 3 and 4 postinfection enhanced luciferase expression additionally was detected in the foreheads of reporter mice. A detailed analysis of cell type-specific IFN-β reporter mice revealed that within the olfactory bulb IFN-β was expressed by neuroectodermal cells, primarily by astrocytes and to a lesser extent by neurons. Importantly, locally induced type I IFN triggered distal parts of the brain as indicated by the analysis of ISRE-eGFP mice which after i.n. VSV infection showed enhanced green fluorescent protein (eGFP) expression throughout the brain. Compared to wild-type mice, IFN-β−/− mice showed increased mortality to i.n. VSV infection, whereas upon i.v. infection no such differences were detected highlighting the biological significance of intracerebrally expressed IFN-β. In conclusion, upon i.n. VSV instillation, IFN-β responses mounted by astrocytes within the olfactory bulb critically contribute to the antiviral defense by stimulating distal IFN-β-negative brain areas and thus arresting virus spread.

IMPORTANCE The central nervous system has long been considered an immune privileged site. More recently, it became evident that specialized immune mechanisms are active within the brain to control pathogens. Previously, we showed that virus, which entered the brain via the olfactory route, was arrested within the olfactory bulb by a type I IFN-dependent mechanism. Since peripheral type I IFN would not readily cross the blood-brain barrier and within the brain thus far no abundant type I IFN responses have been detected, here we addressed from where locally active IFN originated from. We found that upon intranasal VSV instillation, primarily astrocytes, and to a lesser extent neurons, were stimulated within the olfactory bulb to mount IFN-β responses that also activated and protected distal brain areas. Our results are surprising because in other infection models astrocytes have not yet been identified as major type I IFN producers.

  • Copyright © 2015, American Society for Microbiology. All Rights Reserved.
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis
Claudia N. Detje, Stefan Lienenklaus, Chintan Chhatbar, Julia Spanier, Chittappen K. Prajeeth, Claudia Soldner, Michael G. Tovey, Dirk Schlüter, Siegfried Weiss, Martin Stangel, Ulrich Kalinke
Journal of Virology Feb 2015, 89 (5) 2731-2738; DOI: 10.1128/JVI.02044-14

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Upon Intranasal Vesicular Stomatitis Virus Infection, Astrocytes in the Olfactory Bulb Are Important Interferon Beta Producers That Protect from Lethal Encephalitis
Claudia N. Detje, Stefan Lienenklaus, Chintan Chhatbar, Julia Spanier, Chittappen K. Prajeeth, Claudia Soldner, Michael G. Tovey, Dirk Schlüter, Siegfried Weiss, Martin Stangel, Ulrich Kalinke
Journal of Virology Feb 2015, 89 (5) 2731-2738; DOI: 10.1128/JVI.02044-14
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514