Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Virus-Cell Interactions

Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein

Kosuke Oda, Yasuyuki Matoba, Takashi Irie, Ryoko Kawabata, Masaya Fukushi, Masanori Sugiyama, Takemasa Sakaguchi
D. S. Lyles, Editor
Kosuke Oda
aDepartment of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasuyuki Matoba
bDepartment of Molecular Microbiology and Biotechnology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Irie
aDepartment of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryoko Kawabata
aDepartment of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masaya Fukushi
aDepartment of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masanori Sugiyama
bDepartment of Molecular Microbiology and Biotechnology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takemasa Sakaguchi
aDepartment of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. S. Lyles
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.01887-15
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Sendai virus (SeV) C protein inhibits the signal transduction pathways of interferon alpha/beta (IFN-α/β) and IFN-γ by binding to the N-terminal domain of STAT1 (STAT1ND), thereby allowing SeV to escape from host innate immunity. Here we determined the crystal structure of STAT1ND associated with the C-terminal half of the C protein (Y3 [amino acids 99 to 204]) at a resolution of 2.0 Å. This showed that two molecules of Y3 symmetrically bind to each niche created between two molecules of the STAT1ND dimer. Molecular modeling suggested that an antiparallel form of the full-length STAT1 dimer can bind only one Y3 molecule and that a parallel form can bind two Y3 molecules. Affinity analysis demonstrated anticooperative binding of two Y3 molecules with the STAT1 dimer, which is consistent with the hypothetical model that the second Y3 molecule can only target the STAT1 dimer in a parallel form. STAT1 with excess amounts of Y3 was prone to inhibit the dephosphorylation at Tyr701 by a phosphatase. In an electrophoretic mobility shift assay, tyrosine-phosphorylated STAT1 (pY-STAT1) with Y3 associated with the γ-activated sequence, probably as high-molecular-weight complexes (HMWCs), which may account for partial inhibition of a reporter assay from IFN-γ by Y3. Our study suggests that the full-length C protein interferes with the domain arrangement of the STAT1 dimer, leading to the accumulation of pY-STAT1 and the formation of HMWCs. In addition, we discuss the mechanism by which phosphorylation of STAT2 is inhibited in the presence of the C protein after stimulation by IFN-α/β.

IMPORTANCE Sendai virus, a paramyxovirus that causes respiratory diseases in rodents, possesses the C protein, which inhibits the signal transduction pathways of interferon alpha/beta (IFN-α/β) and IFN-γ by binding to the transcription factor STAT1. In virus-infected cells, phosphorylation of STAT1 at the Tyr701 residue is potently enhanced, although transcription by STAT1 is inert. Here, we determined the crystal structure of the N-terminal domain of STAT1 associated with the C-terminal half of the C protein. Molecular modeling and experiments suggested that the two C proteins bind to and stabilize the parallel form of the STAT1 dimer, which are likely to be phosphorylated at Tyr701, further inducing high-molecular-weight complex formation and inhibition of transcription by IFN-γ. We also discuss the possible mechanism of inhibition of the IFN-α/β pathways by the C protein. This is the first structural report of the C protein, suggesting a mechanism of evasion of the paramyxovirus from innate immunity.

FOOTNOTES

    • Received 28 July 2015.
    • Accepted 28 August 2015.
    • Accepted manuscript posted online 2 September 2015.
  • Address correspondence to Takemasa Sakaguchi, tsaka{at}hiroshima-u.ac.jp.
  • Citation Oda K, Matoba Y, Irie T, Kawabata R, Fukushi M, Sugiyama M, Sakaguchi T. 2015. Structural basis of the inhibition of STAT1 activity by Sendai virus C protein. J Virol 89:11487–11499. doi:10.1128/JVI.01887-15.

  • Supplemental material for this article may be found at http://dx.doi.org/10.1128/JVI.01887-15.

  • Copyright © 2015, American Society for Microbiology. All Rights Reserved.
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein
Kosuke Oda, Yasuyuki Matoba, Takashi Irie, Ryoko Kawabata, Masaya Fukushi, Masanori Sugiyama, Takemasa Sakaguchi
Journal of Virology Oct 2015, 89 (22) 11487-11499; DOI: 10.1128/JVI.01887-15

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein
Kosuke Oda, Yasuyuki Matoba, Takashi Irie, Ryoko Kawabata, Masaya Fukushi, Masanori Sugiyama, Takemasa Sakaguchi
Journal of Virology Oct 2015, 89 (22) 11487-11499; DOI: 10.1128/JVI.01887-15
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS AND DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514