Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Vaccines and Antiviral Agents

Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses

Henju Marjuki, Vasiliy P. Mishin, Anton P. Chesnokov, Juan A. De La Cruz, Charles T. Davis, Julie M. Villanueva, Alicia M. Fry, Larisa V. Gubareva
A. García-Sastre, Editor
Henju Marjuki
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vasiliy P. Mishin
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anton P. Chesnokov
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
bBattle Memorial Institute, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juan A. De La Cruz
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
bBattle Memorial Institute, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles T. Davis
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie M. Villanueva
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alicia M. Fry
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Larisa V. Gubareva
aInfluenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. García-Sastre
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.03513-14
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Human infections by avian influenza A(H7N9) virus entail substantial morbidity and mortality. Treatment of infected patients with the neuraminidase (NA) inhibitor oseltamivir was associated with emergence of viruses carrying NA substitutions. In the NA inhibition (NI) assay, R292K conferred highly reduced inhibition by oseltamivir, while E119V and I222K each caused reduced inhibition. To facilitate establishment of laboratory correlates of clinically relevant resistance, experiments were conducted in ferrets infected with virus carrying wild-type or variant NA genes recovered from the A/Taiwan/1/2013 isolate. Oseltamivir treatment (5 or 25 mg/kg of body weight/dose) was given 4 h postinfection, followed by twice-daily treatment for 5 days. Treatment of ferrets infected with wild-type virus resulted in a modest dose-dependent reduction (0.7 to 1.5 log10 50% tissue culture infectious dose [TCID50]) in nasal wash viral titers and inflammation response. Conversely, treatment failed to significantly inhibit the replication of R292K or E119V virus. A small reduction of viral titers was detected on day 5 in ferrets infected with the I222K virus. The propensity for oseltamivir resistance emergence was assessed in oseltamivir-treated animals infected with wild-type virus; emergence of R292K virus was detected in 3 of 6 ferrets within 5 to 7 days postinfection. Collectively, we demonstrate that R292K, E119V, and I222K reduced the inhibitory activity of oseltamivir, not only in the NI assay, but also in infected ferrets, judged particularly by viral loads in nasal washes, and may signal the need for alternative therapeutics. Thus, these clinical outcomes measured in the ferret model may correlate with clinically relevant oseltamivir resistance in humans.

IMPORTANCE This report provides more evidence for using the ferret model to assess the susceptibility of influenza A(H7N9) viruses to oseltamivir, the most prescribed anti-influenza virus drug. The information gained can be used to assist in the establishment of laboratory correlates of human disease and drug therapy. The rapid emergence of viruses with R292K in treated ferrets correlates well with the multiple reports on this NA variant in treated human patients. Our findings highlight the importance of the discovery and characterization of new antiviral drugs with different mechanisms of action and the use of combination treatment strategies against emerging viruses with pandemic potential, such as avian H7N9 virus, particularly against those carrying drug resistance markers.

FOOTNOTES

    • Received 8 December 2014.
    • Accepted 23 February 2015.
    • Accepted manuscript posted online 4 March 2015.
  • Address correspondence to Larisa V. Gubareva, lgubareva{at}cdc.gov.
  • Citation Marjuki H, Mishin VP, Chesnokov AP, De La Cruz JA, Davis CT, Villanueva JM, Fry AM, Gubareva LV. 2015. Neuraminidase mutations conferring resistance to oseltamivir in influenza A(H7N9) viruses. J Virol 89:5419–5426. doi:10.1128/JVI.03513-14.

  • Copyright © 2015, American Society for Microbiology. All Rights Reserved.
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses
Henju Marjuki, Vasiliy P. Mishin, Anton P. Chesnokov, Juan A. De La Cruz, Charles T. Davis, Julie M. Villanueva, Alicia M. Fry, Larisa V. Gubareva
Journal of Virology Apr 2015, 89 (10) 5419-5426; DOI: 10.1128/JVI.03513-14

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses
Henju Marjuki, Vasiliy P. Mishin, Anton P. Chesnokov, Juan A. De La Cruz, Charles T. Davis, Julie M. Villanueva, Alicia M. Fry, Larisa V. Gubareva
Journal of Virology Apr 2015, 89 (10) 5419-5426; DOI: 10.1128/JVI.03513-14
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514