Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Virus-Cell Interactions

Kaposi's Sarcoma-Associated Herpesvirus Downregulates Transforming Growth Factor β2 To Promote Enhanced Stability of Capillary-Like Tube Formation

Terri A. DiMaio, Kimberley D. Gutierrez, Michael Lagunoff
K. Frueh, Editor
Terri A. DiMaio
Department of Microbiology, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kimberley D. Gutierrez
Department of Microbiology, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Lagunoff
Department of Microbiology, University of Washington, Seattle, Washington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Frueh
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/JVI.01696-14
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), the most common tumor of AIDS patients worldwide. A key characteristic of KS tumors is extremely high levels of vascular slits and extravasated red blood cells, making neoangiogenesis a key component of the tumor. The main KS tumor cell is the spindle cell, a cell of endothelial origin that maintains KSHV predominantly in the latent state. In cultured endothelial cells, latent KSHV infection induces angiogenic phenotypes, including longer-term stabilization of capillary-like tube formation in Matrigel, a basement membrane matrix. The present studies show that KSHV infection of endothelial cells strongly downregulates transforming growth factor β2 (TGF-β2). This downregulation allows the stabilization of capillary-like tube formation during latent infection, as the addition of exogenous TGF-β2 inhibits the KSHV-induced stability of these structures. While two KSHV microRNAs are sufficient to downregulate TGF-β2 in endothelial cells, they are not required during KSHV infection. However, activation of the gp130 cell surface receptor is both necessary and sufficient for downregulation of TGF-β2 in KSHV-infected cells.

IMPORTANCE Kaposi's sarcoma is a highly vascularized, endothelial cell-based tumor supporting large amounts of angiogenesis. There is evidence that KSHV, the etiologic agent of KS, induces aberrant angiogenesis. For example, KSHV induces stabilization of capillary-like tube formation in cultured endothelial cells. A clearer understanding of how KSHV regulates angiogenesis could provide potential therapeutic targets for KS. We found that KSHV downregulates TGF-β2, a cytokine related to TGF-β1 that is known to inhibit angiogenesis. The downregulation of this inhibitor promotes the stability of capillary-like tube formation insofar as adding back TGF-β2 to infected cells blocks KSHV-induced long-term tubule stability. Therefore, KSHV downregulation of TGF-β2 may increase aberrant vascularization in KS tumors through increased capillary formation and thereby aid in KS tumor promotion.

FOOTNOTES

    • Received 10 June 2014.
    • Accepted 26 September 2014.
    • Accepted manuscript posted online 1 October 2014.
  • Address correspondence to Michael Lagunoff, Lagunoff{at}u.washington.edu.
  • T.A.D. and K.D.G. contributed equally to this work.

  • Copyright © 2014, American Society for Microbiology. All Rights Reserved.
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Kaposi's Sarcoma-Associated Herpesvirus Downregulates Transforming Growth Factor β2 To Promote Enhanced Stability of Capillary-Like Tube Formation
Terri A. DiMaio, Kimberley D. Gutierrez, Michael Lagunoff
Journal of Virology Nov 2014, 88 (24) 14301-14309; DOI: 10.1128/JVI.01696-14

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kaposi's Sarcoma-Associated Herpesvirus Downregulates Transforming Growth Factor β2 To Promote Enhanced Stability of Capillary-Like Tube Formation
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Kaposi's Sarcoma-Associated Herpesvirus Downregulates Transforming Growth Factor β2 To Promote Enhanced Stability of Capillary-Like Tube Formation
Terri A. DiMaio, Kimberley D. Gutierrez, Michael Lagunoff
Journal of Virology Nov 2014, 88 (24) 14301-14309; DOI: 10.1128/JVI.01696-14
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514