Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
REPLICATION

Construction of a Self-Excisable Bacterial Artificial Chromosome Containing the Human Cytomegalovirus Genome and Mutagenesis of the Diploid TRL/IRL13 Gene

Dong Yu, Gregory A. Smith, Lynn W. Enquist, Thomas Shenk
Dong Yu
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory A. Smith
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lynn W. Enquist
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Shenk
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tshenk@princeton.edu
DOI: 10.1128/jvi.76.5.2316-2328.2002
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The full-length genome of human cytomegalovirus strain AD169 was cloned as an infectious bacterial artificial chromosome (BAC) plasmid, pAD/Cre. The BAC vector, flanked by LoxP sites, was inserted immediately after the Us28 open reading frame without deletion of any viral sequences. The BAC vector contained the Cre recombinase-encoding gene disrupted by an intron under control of the simian virus 40 early promoter. When pAD/Cre was transfected into primary human foreskin fibroblast cells, Cre was expressed and mediated site-specific recombination between the two LoxP sites, excising the BAC DNA backbone. This gave rise to progeny virus that was wild type with the exception of an inserted 34-bp LoxP site. We performed site-directed mutagenesis on pAD/Cre to generate a series of viruses in which the TRL/IRL13 diploid genes were disrupted and subsequently repaired. The mutants reach the same titer as the wild-type virus, indicating that the TRL/IRL13 open reading frames are not required for virus growth in cell culture. The sequence of the TRL13 open reading frame in the low-passage Toledo strain of human cytomegalovirus is quite different from the corresponding region in the AD169 strain. One of multiple changes is a frameshift mutation. As a consequence, strain Toledo encodes a putative TRL13 protein whose C-terminal domain is larger (extending through the TRL14 coding region) and encodes in a reading frame different from that of strain AD169. We speculate that the strain AD169 coding region has drifted during passage in the laboratory. We propose that TRL13 has been truncated in strain AD169 and that the partially overlapping TRL14 open reading frame is not functional. This view is consistent with the presence of both TRL13 and -14 on all mRNAs that we have mapped from this region, an organization that would include the much longer strain Toledo TRL13 open reading frame on the mRNAs.

  • Copyright © 2002 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Construction of a Self-Excisable Bacterial Artificial Chromosome Containing the Human Cytomegalovirus Genome and Mutagenesis of the Diploid TRL/IRL13 Gene
Dong Yu, Gregory A. Smith, Lynn W. Enquist, Thomas Shenk
Journal of Virology Mar 2002, 76 (5) 2316-2328; DOI: 10.1128/jvi.76.5.2316-2328.2002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Construction of a Self-Excisable Bacterial Artificial Chromosome Containing the Human Cytomegalovirus Genome and Mutagenesis of the Diploid TRL/IRL13 Gene
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Construction of a Self-Excisable Bacterial Artificial Chromosome Containing the Human Cytomegalovirus Genome and Mutagenesis of the Diploid TRL/IRL13 Gene
Dong Yu, Gregory A. Smith, Lynn W. Enquist, Thomas Shenk
Journal of Virology Mar 2002, 76 (5) 2316-2328; DOI: 10.1128/jvi.76.5.2316-2328.2002
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Chromosomes, Artificial, Bacterial
Cloning, Molecular
cytomegalovirus
Repetitive Sequences, Nucleic Acid
Terminal Repeat Sequences
Viral Proteins

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514