Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JVI Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JVI Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, U.S. Gov't, P.H.S.

The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells.

J H Ahn, G S Hayward
J H Ahn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G S Hayward
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The major immediate-early (MIE) gene products of human cytomegalovirus (HCMV) are nuclear phosphoproteins that are thought to play key roles in initiating lytic cycle gene regulation pathways. We have examined the intranuclear localization pattern of both the IE1 and IE2 proteins in virus-infected and DNA-transfected cells. When HCMV-infected human diploid fibroblast (HF) cells were stained with specific monoclonal antibodies, IE1 localized as a mixture of nuclear diffuse and punctate patterns at very early times (2 h) but changed to an exclusively nuclear diffuse pattern at later times. In contrast, IE2 was distributed predominantly in nuclear punctate structures continuously from 2 to at least 12 h after infection. These punctate structures resembled the preexisting PML-associated nuclear bodies (ND10 or PML oncogenic domains [PODs]) that are disrupted and dispersed by the IE110 protein as a very early event in herpes simplex virus (HSV) infection. However, HCMV differed from HSV by leading instead to a change in both the PML and SP100 protein distribution from punctate bodies to uniform diffuse patterns, a process that was complete in 50% of the cells at 2 h and in 90% of the cells by 4 h after infection. Confocal double-label indirect immunofluorescence assay analysis confirmed that both IE1 and IE2 colocalized transiently with PML in punctate bodies at very early times after infection. In transient expression assays, introduction of IE1-encoding plasmid DNA alone into Vero or HF cells produced the typical total redistribution of PML into a uniform nuclear diffuse pattern together with the IE1 protein, whereas introduction of IE2-encoding plasmid DNA alone resulted in stable colocalization of the IE2 protein with PML in the PODs. A truncated mutant form of IE1 gave large nuclear aggregates and failed to redistribute PML, and similarly a deleted mutant form of IE2 failed to colocalize with the punctate PML bodies, confirming the specificity of these effects. Furthermore, both Vero and U373 cell lines constitutively expressing IE1 also showed total PML relocalization together with the IE1 protein into a nuclear diffuse pattern, although a very small percentage of the cells which failed to express IE1 reverted to a punctate PML pattern. Finally, the PML redistribution activity of IE1 and the direct association of IE2 with PML punctate bodies were both confirmed by infection with E1A-negative recombinant adenovirus vectors expressing either IE1 or IE2 alone. These results confirm that transient colocalization with and disruption of PML-associated nuclear bodies by IE1 and continuous targeting to PML-associated nuclear bodies by IE2 are intrinsic properties of these two MIE regulatory proteins, which we suggest may represent critical initial events for efficient lytic cycle infection by HCMV.

PreviousNext
Back to top
Download PDF
Citation Tools
The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells.
J H Ahn, G S Hayward
Journal of Virology Jun 1997, 71 (6) 4599-4613; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
Share
The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells.
J H Ahn, G S Hayward
Journal of Virology Jun 1997, 71 (6) 4599-4613; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514