Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis.

W J Melchers, J G Hoenderop, H J Bruins Slot, C W Pleij, E V Pilipenko, V I Agol, J M Galama
W J Melchers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J G Hoenderop
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H J Bruins Slot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C W Pleij
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E V Pilipenko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V I Agol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Galama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Higher-order RNA structures in the 3' untranslated region (3'UTR) of enteroviruses are thought to play a pivotal role in viral negative-strand RNA synthesis. The structure of the 3'UTR was predicted by thermodynamic calculations using the STAR (structural analysis of RNA) computer program and experimentally verified using chemical and enzymatic probing of in vitro-synthesized RNA. A possible pseudoknot interaction between the 3D polymerase coding sequence and domain Y and a "kissing" interaction between domains X and Y was further studied by mutational analysis, using an infectious coxsackie B3 virus cDNA clone (domain designation as proposed by E. V. Pilipenko, S. V. Maslova, A. N. Sinyakov, and V.I. Agol (Nucleic Acids Res. 20:1739-1745, 1992). The higher-order RNA structure of the 3'UTR appeared to be maintained by an intramolecular kissing interaction between the loops of the two predominant hairpin structures (X and Y) within the 3'UTR. Disturbing this interaction had no effect on viral translation and processing of the polyprotein but exerted a primary effect on viral replication, as was demonstrated in a subgenomic coxsackie B3 viral replicon, in which the capsid P1 region was replaced by the luciferase gene. Mutational analysis did not support the existence of the pseudoknot interaction between hairpin loop Y and the 3D polymerase coding sequence. Based on these experiments, we constructed a three-dimensional model of the 3'UTR of coxsackie B virus that shows the kissing interaction as the essential structural feature of the origin of replication required for its functional competence.

PreviousNext
Back to top
Download PDF
Citation Tools
Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis.
W J Melchers, J G Hoenderop, H J Bruins Slot, C W Pleij, E V Pilipenko, V I Agol, J M Galama
Journal of Virology Jan 1997, 71 (1) 686-696; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis.
W J Melchers, J G Hoenderop, H J Bruins Slot, C W Pleij, E V Pilipenko, V I Agol, J M Galama
Journal of Virology Jan 1997, 71 (1) 686-696; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514