Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain.

Y Xiang, C E Cameron, J W Wills, J Leis
Y Xiang
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C E Cameron
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J W Wills
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Leis
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The p2 region of the Rous sarcoma virus (RSV) Gag polyprotein contains an assembly domain, which is required late in replication for efficient budding of virus-like particles from cells (J. W. Wills, C. E. Cameron, C. B. Wilson, Y. Xiang, R. P. Bennett, and J. Leis, J. Virol. 68:6605-6618, 1994). This domain, referred to as the L domain, was previously mapped to the 11 amino acids of p2b. Through the analysis of a series of deletion and substitution mutations, the L domain has now been fine mapped to a highly conserved amino acid sequence, PPPPYV of p2b. Sequences flanking PPPPYV motif can be deleted without any effect on budding. Defects caused by L-domain deletions can be rescued by placing a wild-type copy of the sequence at several other positions in RSV Gag. A proline-rich P(S/T)APP motif is found in many retroviral Gag polyproteins; the motif found in the p6 region of human immunodeficiency virus type 1 has been implicated in late functions of the virus. Substitution of the RSV L domain with this motif in a 10-amino-acid sequence derived from visna leukemia virus results in wild-type release of virus particles from cells. In contrast, the slightly different sequences from Gibbon ape leukemia virus, Moloney leukemia virus, PSAPP alone, or a proline-rich SH3 binding sequence do not efficiently rescue RSV L-domain mutations.

PreviousNext
Back to top
Download PDF
Citation Tools
Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain.
Y Xiang, C E Cameron, J W Wills, J Leis
Journal of Virology Aug 1996, 70 (8) 5695-5700; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain.
Y Xiang, C E Cameron, J W Wills, J Leis
Journal of Virology Aug 1996, 70 (8) 5695-5700; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514