Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JVI Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JVI Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes.

J H Simon, M H Malim
J H Simon
Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M H Malim
Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The vif gene of human immunodeficiency virus type 1 is absolutely required for productive infection of primary cells derived from human blood and certain immortalized T lymphoid cells, for example, H9. Cells with this restrictive phenotype are termed nonpermissive, whereas cell lines in which vif-deficient virus can replicate efficiently are known as permissive. In this paper, we describe experiments in which virus stocks derived from single-cycle infections of strictly nonpermissive H9 cells were used to determine the fate of vif-deficient infections. By PCR-based approaches, it was found that Vif has no significant impact on the biosynthetic capability of the virion reverse transcriptase in infected C8166 T cells. Specifically, the initial appearance of all DNA species up to and including initiated second (plus) strands as well as the early accumulation of these replicative intermediates is equivalent for wild-type and vif-deficient infections. However, whereas these viral DNAs are stably maintained in wild-type infections and can proceed to establish proviruses, they are largely degraded by the later time points of vif-deficient infections and, as a result, are prevented from forming proviruses. Subcellular fractionation analyses indicated that the majority of viral DNA is localized to the nucleus within 2 h of infection and that the turnover of reverse transcripts that occurs in these vif-deficient infections presumably takes place in the nucleus. Given that the ultimate infection phenotype of the virions is determined during virus production, we propose that Vif is required for an aspect of virus assembly and/or maturation that endows penetrating viral nucleoprotein cores with the ability to mature into functional preintegration complexes that can proceed to provirus establishment. In contrast, viruses that are produced in the absence of Vif give rise to nucleoprotein complexes that disassemble prematurely in challenged cells and fail to protect their RNA/DNA contents from nucleolytic destruction.

PreviousNext
Back to top
Download PDF
Citation Tools
The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes.
J H Simon, M H Malim
Journal of Virology Aug 1996, 70 (8) 5297-5305; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
Share
The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes.
J H Simon, M H Malim
Journal of Virology Aug 1996, 70 (8) 5297-5305; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514