Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, U.S. Gov't, P.H.S.

The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element.

L Huang, Y Zhu, D G Anders
L Huang
The David Axelrod Institute, Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York 12201-2002, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Zhu
The David Axelrod Institute, Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York 12201-2002, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D G Anders
The David Axelrod Institute, Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York 12201-2002, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The genetically defined human cytomegalovirus (HCMV) lytic-phase replicator, oriLyt, comprises more than 2 kb in a structurally complex region that spans a variety of potential transcription control signals. Several transcripts originate within or cross oriLyt, and we are studying these oriLyt transcription units to determine whether they participate in initiating or regulating lytic-phase DNA synthesis. Results presented here establish the temporal accumulation and structure of the smallest replicator transcript, which we call SRT, and identify a single-sequence element essential to replicator function. SRT was detected as early as 2 h after HCMV infection of human fibroblast cells; transcript levels increased by 24 h and continued to increase thereafter. Consistent with its early appearance, treatment of HCMV-infected cells with the viral DNA polymerase inhibitor phosphonoformic acid had no effect on SRT accumulation; however, no SRT was detected in RNA preparations from cycloheximide-treated infected cells. Additional Northern (RNA) analysis localized the 0.2- to 0.25-kb SRT to an apparently noncoding segment near the center of the oriLyt core region. Reverse transcriptase PCR (rapid amplification of cDNA 5' ends [5'-RACE]) identified a single 5' end. In transient-transfection assays, the sequence immediately upstream of SRT functioned as a promoter responsive to HCMV infection when placed upstream of a reporter gene, suggesting that SRT is the product of a discrete transcription unit. RNA ligase-mediated 3'-RACE showed that SRT is not polyadenylated and has heterogeneous 3' ends within a roughly 45-nucleotide window overlapping an oligopyrimidine sequence having counterparts in the lytic-phase replicators of several herpesviruses. Mutation of the oligopyrimidine element showed that it is essential to oriLyt replicator function; it is the only essential single-sequence HCMV oriLyt replicator element described to date. Collectively, the location of SRT near the center of the oriLyt core region, its early expression, its overlapping relationship with a sequence element essential to replicator function, and its similarities to replicator transcripts in other systems suggest the possibility that SRT plays a role in initiating or regulating HCMV lytic-phase DNA synthesis.

PreviousNext
Back to top
Download PDF
Citation Tools
The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element.
L Huang, Y Zhu, D G Anders
Journal of Virology Aug 1996, 70 (8) 5272-5281; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element.
L Huang, Y Zhu, D G Anders
Journal of Virology Aug 1996, 70 (8) 5272-5281; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514