Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding.

Z Zheng, E Maidji, S Tugizov, L Pereira
Z Zheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Maidji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Tugizov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Pereira
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Human cytomegalovirus glycoprotein B (gB) plays a role in the fusion of the virion envelope with the host cell membrane and in syncytium formation in infected cells. Hydrophobic sequences at the carboxyl terminus, amino acids (aa) 714 to 771, anchor gB in the lipid bilayer, but the unusual length of this domain suggests that it may serve another role in gB structure. To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), and aa 717 to 772 (gB deltaI-II mutation) and constructed a substitution mutation, Lys-748 to Val (Lys748Val)-Asn749Ala-Pro750Ile (gB KNPm). Mutated forms of gB were expressed in U373 glioblastoma cells and subjected to analysis by flow cytometry, confocal microscopy, and immunoprecipitation. Mutations gB deltaI-II and gB deltaII alone caused secretion of gB into the medium, confirming that aa 751 to 771 function as a membrane anchor. In contrast, mutations gB deltaI and gB KNPm blocked cell surface expression and arrested gB transport in the endoplasmic reticulum (ER). Detailed examination of gB deltaI and gB KNPm with a panel of monoclonal antibodies showed that the mutated forms were indistinguishable from wild-type gB in conformation and formed oligomers; however, they remained sensitive to endoglycosidase H and did not undergo endoproteolytic cleavage. Analysis of protein complexes formed by gB and molecular chaperones in the ER showed that calnexin and calreticulin, lectin-like chaperones, bound equal amounts of uncleaved wild-type gB, gB deltaI, and gB KNPm, but the glucose-regulated proteins 78 (BiP) and 94 formed stable complexes only with the mutated forms, causing their retention in the ER. Our studies show that aa 714 to 750 are key residues in the architecture of gB molecules and that the ER chaperones, which facilitate gB folding and monitor the quality of glycoproteins, detect subtle changes in folding intermediates that are conferred by mutations in this region.

PreviousNext
Back to top
Download PDF
Citation Tools
Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding.
Z Zheng, E Maidji, S Tugizov, L Pereira
Journal of Virology Nov 1996, 70 (11) 8029-8040; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding.
Z Zheng, E Maidji, S Tugizov, L Pereira
Journal of Virology Nov 1996, 70 (11) 8029-8040; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514