Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.

Expression of the rotavirus SA11 protein VP7 in the simple eukaryote Dictyostelium discoideum.

K R Emslie, J M Miller, M B Slade, P R Dormitzer, H B Greenberg, K L Williams
K R Emslie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M B Slade
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P R Dormitzer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H B Greenberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K L Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The outer capsid protein of rotavirus, VP7, is a major neutralization antigen and is considered a necessary component of any subunit vaccine developed against rotavirus infection. For this reason, significant effort has been directed towards producing recombinant VP7 that maintains the antigenic characteristics of the native molecule. Using a relatively new expression system, the simple eukaryote Dictyostelium discoideum, we have cloned the portion of simian rotavirus SA11 genome segment 9, encoding the mature VP7 protein, downstream of a native D. discoideum secretion signal sequence in a high-copy-number extrachromosomal vector. The majority of the recombinant VP7 expressed by transformants was intracellular and was detected by Western immunoblot following gel electrophoresis as two or three bands with an apparent molecular mass of 35.5 to 37.5 kDa. A small amount of VP7 having an apparent molecular mass of 37.5 kDa was secreted. Both the intracellular VP7 and the secreted VP7 were N glycosylated and sensitive to endoglycosidase H digestion. Under nonreducing electrophoresis conditions, over half the intracellular VP7 migrated as a monomer while the remainder migrated with an apparent molecular mass approximately twice that of the monomeric form. In an enzyme-linked immunosorbent assay, intracellular VP7 reacted with both nonneutralizing and neutralizing antibodies. The monoclonal antibody recognition pattern paralleled that found with VP7 expressed in either vaccinia virus or herpes simplex virus type 1 and confirms that D. discoideum-expressed VP7 is able to form the major neutralization domains present on viral VP7. Because D. discoideum cells are easy and cheap to grow, this expression system provides a valuable alternative for the large-scale production of recombinant VP7 protein.

PreviousNext
Back to top
Download PDF
Citation Tools
Expression of the rotavirus SA11 protein VP7 in the simple eukaryote Dictyostelium discoideum.
K R Emslie, J M Miller, M B Slade, P R Dormitzer, H B Greenberg, K L Williams
Journal of Virology Mar 1995, 69 (3) 1747-1754; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression of the rotavirus SA11 protein VP7 in the simple eukaryote Dictyostelium discoideum.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Expression of the rotavirus SA11 protein VP7 in the simple eukaryote Dictyostelium discoideum.
K R Emslie, J M Miller, M B Slade, P R Dormitzer, H B Greenberg, K L Williams
Journal of Virology Mar 1995, 69 (3) 1747-1754; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514