Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
In Vitro | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.

Sanctuary growth of human immunodeficiency virus in the presence of 3'-azido-3'-deoxythymidine.

D J Medina, P P Tung, M B Lerner-Tung, C J Nelson, J W Mellors, R K Strair
D J Medina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P P Tung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M B Lerner-Tung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C J Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J W Mellors
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R K Strair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Human immunodeficiency virus (HIV) resistance to the nonnucleoside reverse transcriptase inhibitors emerges very rapidly under selection in culture and in patients. In contrast, zidovudine (3'-azido-3'-deoxythymidine [AZT])-resistant HIV generally emerges in patients only after more-prolonged therapy. Although HIV can be cultured from many patients shortly after the initiation of AZT treatment, characterization of the virus that is cultured generally indicates that it is sensitive to AZT. To initiate an evaluation of the mechanisms contributing to early HIV breakthrough in the presence of AZT and other nucleoside analogs, we have utilized replication-defective HIV encoding reporter genes. These recombinant HIV allow a quantitative analysis of a single cycle of infection. Results with these defective HIV indicate that early infection in the presence of AZT often results from the infection of a cell which is refractory to the antiretroviral effects of AZT. Characterization of a cell line derived from one such cell has demonstrated decreased accumulation of AZT triphosphate, increased phosphorylation of thymidine to thymidine triphosphate, and increased levels of thymidine kinase activity. In addition, AZT inhibition of replication-competent HIV infection is also significantly impaired in this cell line. Attempts to detect and characterize the mechanisms responsible for early viral infection after initiation of AZT therapy may result in the development of new strategies for prolonged suppression of viral infection prior to the emergence of drug-resistant virus.

PreviousNext
Back to top
Download PDF
Citation Tools
Sanctuary growth of human immunodeficiency virus in the presence of 3'-azido-3'-deoxythymidine.
D J Medina, P P Tung, M B Lerner-Tung, C J Nelson, J W Mellors, R K Strair
Journal of Virology Mar 1995, 69 (3) 1606-1611; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sanctuary growth of human immunodeficiency virus in the presence of 3'-azido-3'-deoxythymidine.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Sanctuary growth of human immunodeficiency virus in the presence of 3'-azido-3'-deoxythymidine.
D J Medina, P P Tung, M B Lerner-Tung, C J Nelson, J W Mellors, R K Strair
Journal of Virology Mar 1995, 69 (3) 1606-1611; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514