Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication.

D P Burns, H M Temin
D P Burns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H M Temin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Homo-oligomeric runs were inserted into a spleen necrosis virus-based retrovirus vector to determine the nature and rate of mutations within runs of 10 to 12 identical nucleotides during a single replication cycle. Clones of helper cells containing integrated copies of retroviral vectors were used to produce virus for infection of target (nonhelper) cells. Proviral sequences from target cell clones were compared with proviral sequences from helper cell clones to study mutations that occurred during a single cycle of replication. In addition to the internal region spanning the homo-oligomeric inserts, a naturally occurring run of 10 T's in the long terminal repeat (LTR) also was sequenced. Rates of mutation ranged from < 0.01 to 0.38 frameshift mutations per run per cycle for different nucleotide runs. Frameshift mutations ranged from deletions of 2 bases to additions of 5 bases; the most common mutations were +1 and -1. Frameshift mutation rates did not increase as the run length increased from 10 to 12 bases. Rates of frameshift mutation for runs of T's and A's were significantly higher than rates for runs of C's and G's, and rates for runs of pyrimidines were significantly higher than those for runs of purines. Interestingly, the vast majority of frameshift mutations in the internal region (95%) were positive, suggesting that the primer strand tends to slip backward on the template in this region. LTR runs had a significantly lower number of positive frameshift mutations than the internal runs. By analyzing the types of frameshift mutations within runs and by comparing the patterns of frameshift mutations in the 5' and 3' LTRs of individual proviruses, we conclude that the majority of mutations observed in our system occurred during minus-strand DNA synthesis of reverse transcription.

PreviousNext
Back to top
Download PDF
Citation Tools
High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication.
D P Burns, H M Temin
Journal of Virology Jul 1994, 68 (7) 4196-4203; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication.
D P Burns, H M Temin
Journal of Virology Jul 1994, 68 (7) 4196-4203; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514