Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements.

G Dong, T R Broker, L T Chow
G Dong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T R Broker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L T Chow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The E6 promoter of human papillomaviruses (HPVs) trophic for epithelia for the lower genital tract and the upper respiratory tract is regulated in vitro by homologous and heterologous papillomaviral E2 proteins that bind to a consensus responsive sequence (E2-RS) ACCN6GGT. When HPV type 11 (HPV-11) expression is examined in epithelial cell lines, the HPV-11 E2-C protein, which lacks the amino-terminal transactivating domain of the full-length E2 protein, invariably represses the homologous viral E6 promoter. In contrast, when the novel constitutive enhancer (CE) CE II is deleted, not only is the basal promoter activity much reduced, it is further repressed by the intact HPV-11 E2 protein (M. T. Chin, T. R. Broker, and L. T. Chow, J. Virol. 63:2967-2976, 1989). Here, we demonstrated that, when expressed from a stronger surrogate promoter, the HPV-11 E2 protein represses the E6 promoter effectively, regardless of CE II. By performing systematic mutational analyses of the four highly conserved copies of the HPV-11 E2-RS and of the adjacent enhancer-promoter elements, we show that the furthest upstream, promoter-distal E2-RS copy 1 plays no apparent role in E6 promoter regulation. Repression by the homologous HPV-11 E2 proteins is mediated through each of the three promoter-proximal copies of the E2-RS, but the presence of CE II abrogates the full-length E2 protein repression exerted at E2-RS copy 2. Repression is alleviated when the two (for E2) or three (for E2-C) promoter-proximal copies of E2-RS are mutated. We specifically demonstrate that repression exerted at E2-RS 3 is due to preclusion of binding of the host transcription factor Sp1 or Sp1-like proteins to a nonconsensus sequence AGGAGG located 1 bp upstream of the tandem E2 protein binding sites 3 and 4. A 3-bp insertion between the adjacent Sp1 and E2-RS 3 sites permits both Sp1 and E2 proteins to bind, with a concomitant relief of E2-RS 3-mediated repression. Similar mutational analyses show that proteins that bind to the GT-1 motif near the upstream E2-RS 2 help abrogate repression by the E2 protein in the presence of CE II. The implications of these results with respect to the viral infectious cycle and during viral oncogenesis are discussed.

PreviousNext
Back to top
Download PDF
Citation Tools
Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements.
G Dong, T R Broker, L T Chow
Journal of Virology Feb 1994, 68 (2) 1115-1127; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements.
G Dong, T R Broker, L T Chow
Journal of Virology Feb 1994, 68 (2) 1115-1127; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514