Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth.

H G Wang, Y Rikitake, M C Carter, P Yaciuk, S E Abraham, B Zerler, E Moran
H G Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Rikitake
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M C Carter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Yaciuk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S E Abraham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Zerler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Moran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Adenovirus early region 1A (E1A) oncogene-encoded sequences essential for transformation- and cell growth-regulating activities are localized at the N terminus and in regions of highly conserved amino acid sequence designated conserved regions 1 and 2. These regions interact to form the binding sites for two classes of cellular proteins: those, such as the retinoblastoma gene product, whose association with the E1A products is specifically dependent on region 2, and another class which so far is known to include only a large cellular DNA-binding protein, p300, whose association with the E1A products is specifically dependent on the N-terminal region. Association between the E1A products and either class of cellular proteins can be disrupted by mutations in conserved region 1. While region 2 has been studied intensively, very little is known so far concerning the nature of the essential residues in the N-terminal region, or about the manner in which conserved region 1 participates in the binding of two distinct sets of cellular proteins. A combination of site-directed point mutagenesis and monoclonal antibody competition experiments reported here suggests that p300 binding is dependent on specific, conserved residues in the N terminus, including positively charged residues at positions 2 and 3 of the E1A proteins, and that p300 and pRB bind to distinct, nonoverlapping subregions within conserved region 1. The availability of precise point mutations disrupting p300 binding supports previous data linking p300 with cell cycle control and enhancer function.

PreviousNext
Back to top
Download PDF
Citation Tools
Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth.
H G Wang, Y Rikitake, M C Carter, P Yaciuk, S E Abraham, B Zerler, E Moran
Journal of Virology Jan 1993, 67 (1) 476-488; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth.
H G Wang, Y Rikitake, M C Carter, P Yaciuk, S E Abraham, B Zerler, E Moran
Journal of Virology Jan 1993, 67 (1) 476-488; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514