Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotheraphy
    • Applied and Environmental Mircobiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JVI Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotheraphy
    • Applied and Environmental Mircobiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JVI Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses.

D K Clarke, E A Duarte, A Moya, S F Elena, E Domingo, J Holland
D K Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E A Duarte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Moya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S F Elena
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Domingo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Holland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Repeated clone-to-clone (genetic bottleneck) passages of an RNA phage and vesicular stomatitis virus have been shown previously to result in loss of fitness due to Muller's ratchet. We now demonstrate that Muller's ratchet also operates when genetic bottleneck passages are carried out at 37 rather than 32 degrees C. Thus, these fitness losses do not depend on growth of temperature-sensitive (ts) mutants at lowered temperatures. We also demonstrate that during repeated genetic bottleneck passages, accumulation of deleterious mutations does occur in a stepwise (ratchet-like) manner as originally proposed by Muller. One selected clone which had undergone significant loss of fitness after only 20 genetic bottleneck passages was passaged again in clone-to-clone series. Additional large losses of fitness were observed in five of nine independent bottleneck series; the relative fitnesses of the other four series remained close to the starting fitness. In sharp contrast, when the same selected clone was transferred 20 more times as large populations (10(5) to 10(6) PFU transferred at each passage), significant increases in fitness were observed in all eight passage series. Finally, we selected several clones which had undergone extreme losses of fitness during 20 bottleneck passages. When these low-fitness clones were passaged many times as large virus populations, they always regained very high relative fitness. We conclude that transfer of large populations of RNA viruses regularly selects those genomes within the quasispecies population which have the highest relative fitness, whereas bottleneck transfers have a high probability of leading to loss of fitness by random isolation of genomes carrying debilitating mutations. Both phenomena arise from, and underscore, the extreme mutability and variability of RNA viruses.

PreviousNext
Back to top
Download PDF
Citation Tools
Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses.
D K Clarke, E A Duarte, A Moya, S F Elena, E Domingo, J Holland
Journal of Virology Jan 1993, 67 (1) 222-228; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
Share
Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses.
D K Clarke, E A Duarte, A Moya, S F Elena, E Domingo, J Holland
Journal of Virology Jan 1993, 67 (1) 222-228; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514