Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic-length template.

K Yokomori, L R Banner, M M Lai
K Yokomori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L R Banner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M M Lai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Mouse hepatitis virus (MHV) synthesizes seven to eight mRNAs, each of which contains a leader RNA derived from the 5' end of the genome. To understand the mechanism of synthesis of these mRNAs, we studied how the synthesis of each mRNA was affected by UV irradiation at different time points after infection. When MHV-infected cells were UV irradiated at a late time in infection (5 h postinfection), the syntheses of the various mRNAs were inhibited to different extents in proportion to the sizes of the mRNAs. Analysis of the UV inactivation kinetics revealed that the UV target size of each mRNA was equivalent to its own physical size. In contrast, when cells were irradiated at 2.5 or 3 h postinfection, there appeared to be two different kinetics of inhibition of mRNA synthesis: the synthesis of every mRNA was inhibited to the same extent by a small UV dose, but the remaining mRNA synthesis was inhibited by additional UV doses at different rates for different mRNAs in proportion to RNA size. The analysis of the UV inactivation kinetics indicated that the UV target sizes for the majority of mRNAs were equivalent to that of the genomic-size RNA early in the infection. These results suggest that MHV mRNA synthesis requires the presence of a genomic-length RNA template at least early in the infection. In contrast, later in the infection, the sizes of the templates used for mRNA synthesis were equivalent to the physical sizes of each mRNA. The possibility that the genomic-length RNA required early in the infection was used only for the synthesis of a polymerase rather than as a template for mRNA synthesis was ruled out by examining the UV sensitivity of a defective interfering (DI) RNA. We found that the UV target size for the DI RNA early in infection was much smaller than that for mRNAs 6 and 7, which are approximately equal to or smaller in size than the DI RNA. This result indicates that even though DI RNA and viral mRNAs are synthesized by the same polymerase, mRNAs are synthesized from a larger (genomic-length) template. We conclude that a genomic-length RNA template is required for MHV subgenomic mRNA synthesis at least early in infection. Several transcription models are proposed.

PreviousNext
Back to top
Download PDF
Citation Tools
Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic-length template.
K Yokomori, L R Banner, M M Lai
Journal of Virology Aug 1992, 66 (8) 4671-4678; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic-length template.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Coronavirus mRNA transcription: UV light transcriptional mapping studies suggest an early requirement for a genomic-length template.
K Yokomori, L R Banner, M M Lai
Journal of Virology Aug 1992, 66 (8) 4671-4678; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514