Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

The regions important for the activator and repressor functions of herpes simplex virus type 1 alpha protein ICP27 map to the C-terminal half of the molecule.

M A Hardwicke, P J Vaughan, R E Sekulovich, R O'Conner, R M Sandri-Goldin
M A Hardwicke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P J Vaughan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R E Sekulovich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R O'Conner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R M Sandri-Goldin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The herpes simplex virus type 1 (HSV-1) alpha or immediate-early proteins ICP4 (IE175), ICP0 (IE110), and ICP27 (IE63) are trans-acting proteins which affect HSV-1 gene expression. We previously showed that ICP27 in combination with ICP4 and ICP0 could act as a repressor or an activator in transfection assays, depending on the target gene (R. E. Sekulovich, K. Leary, and R. M. Sandri-Goldin, J. Virol. 62:4510-4522, 1988). To investigate the regions of the ICP27 protein which specify these functions, we constructed a series of in-frame insertion and deletion mutants in the ICP27 gene. These mutants were analyzed in transient expression assays for the ability to repress or to activate two different target genes. The target plasmids used consisted of the promoter regions from the HSV-1 beta or early gene which encodes thymidine kinase and from the beta-gamma or leaky late gene. VP5, which encodes the major capsid protein, each fused to the chloramphenicol acetyltransferase gene. Our previous studies showed that induction of pTK-CAT expression by ICP4 and ICP0 was repressed by ICP27, whereas the stimulation of pVP5-CAT expression seen with ICP4 and ICP0 was significantly increased when ICP27 was also added. In this study, a series of transfection assays was performed with each of the ICP27 mutant plasmids in combination with plasmids containing the ICP4 and ICP0 genes with each target. The results of these experiments showed that mutants containing insertions or deletions in the region from amino acids 262 to 406 in the carboxy-terminal half of the protein were unable to stimulate expression of pVP5-CAT but were able to repress induction of pTK-CAT activity by ICP4 and ICP0. Mutants in the carboxy-terminal 78 amino acids lost both activities; that is, these mutants did not show repression of pTK-CAT activity or stimulation of pVP5-CAT activity, whereas mutants in the hydrophilic amino-terminal half of ICP27 were able to perform both functions. These results show that the carboxy-terminal half of ICP27 is important for the activation and repression functions. Furthermore, the carboxy-terminal 62 amino acids are required for the repressor activity, because mutants with this region intact were able to repress. Analysis of the DNA sequence showed that there are a number of cysteine and histidine residues encoded by this region which have some similarity to zinc finger metal-binding regions found in other eucaryotic regulatory proteins. These results suggest that the structural integrity of this region is important for the function of ICP27.

PreviousNext
Back to top
Download PDF
Citation Tools
The regions important for the activator and repressor functions of herpes simplex virus type 1 alpha protein ICP27 map to the C-terminal half of the molecule.
M A Hardwicke, P J Vaughan, R E Sekulovich, R O'Conner, R M Sandri-Goldin
Journal of Virology Nov 1989, 63 (11) 4590-4602; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The regions important for the activator and repressor functions of herpes simplex virus type 1 alpha protein ICP27 map to the C-terminal half of the molecule.
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The regions important for the activator and repressor functions of herpes simplex virus type 1 alpha protein ICP27 map to the C-terminal half of the molecule.
M A Hardwicke, P J Vaughan, R E Sekulovich, R O'Conner, R M Sandri-Goldin
Journal of Virology Nov 1989, 63 (11) 4590-4602; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514