Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Virology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Minireviews
    • JVI Classic Spotlights
    • Archive
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JVI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
ANIMAL VIRUSES

Role of Adenovirus Structural Proteins in the Cessation of Host-Cell Biosynthetic Functions

A. J. Levine, H. S. Ginsberg
A. J. Levine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. S. Ginsberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Two of the adenovirus capsid proteins, the fiber and the hexon, complexed with either KB cell or type 5 adenovirus deoxyribonucleic acid (DNA). Maximal binding occurred at 0.01 m NaCl; increasing the ionic strength of the reaction mixture to 0.2 m NaCl resulted in a decrease in the association of either antigen to DNA. Variations of pH between 6.3 and 8.4 did not affect the binding of fiber antigen to DNA. Below pH 7.5, however, there was a small decrease in the ability of the hexon to bind nucleic acid. The association between the adenovirus structural proteins and DNA was reversible and was independent of whether the DNA was native or denatured. The fiber or hexon protein inhibited the DNA-dependent ribonucleic acid (RNA) polymerase and the DNA polymerase from KB cells. On a weight basis, the fiber protein inhibited enzymatic activity to a greater extent than the hexon. Increasing the template DNA concentration decreased this inhibition. The inhibition of the DNA-dependent RNA polymerase activity by either antigen could be reversed by increasing the ionic strength of the reaction mixture. After infection of KB cells with type 5 adenovirus, the levels of DNA and RNA polymerases remained unchanged for 15 to 20 hr. Thereafter, the specific activity of both enzymes decreased. By 30 hr postinfection, the polymerase activities were only about 30% of the enzyme activities in uninfected cells.

FOOTNOTES

  • ↵2 Present address: California Institute of Technology, Division of Biology, Pasadena, Calif. 91109.

  • ↵1 A preliminary report of this investigation was presented at the Annual Meeting of the American Society for Microbiology, Los Angeles, Calif., 1966. Presented to the Faculty of the Graduate School of Arts and Sciences of the University of Pennsylvania in partial fulfillment of the requirements for the PhD. degree by A. J. Levine.

  • Copyright © 1968 American Society for Microbiology
PreviousNext
Back to top
Download PDF
Citation Tools
Role of Adenovirus Structural Proteins in the Cessation of Host-Cell Biosynthetic Functions
A. J. Levine, H. S. Ginsberg
Journal of Virology May 1968, 2 (5) 430-439; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Virology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Adenovirus Structural Proteins in the Cessation of Host-Cell Biosynthetic Functions
(Your Name) has forwarded a page to you from Journal of Virology
(Your Name) thought you would be interested in this article in Journal of Virology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Role of Adenovirus Structural Proteins in the Cessation of Host-Cell Biosynthetic Functions
A. J. Levine, H. S. Ginsberg
Journal of Virology May 1968, 2 (5) 430-439; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JVI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jvirology

@ASMicrobiology

       

 

JVI in collaboration with

American Society for Virology

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0022-538X; Online ISSN: 1098-5514