Identification and characterization of the binding site of the respiratory syncytial virus phosphoprotein to RNA-free nucleoprotein

Marie Galloux¹, Gaëlle Gabiane¹, Julien Sourimant¹,², Charles-Adrien Richard¹, Patrick England³,⁴, Mohammed Moudjou¹, Magali Aumont-Nicaise⁵, Jenna Fix¹, Marie-Anne Rameix-Welti²,⁶, and Jean-François Eléouët¹

Running title: respiratory syncytial virus N²-P complex

Keywords: RSV, nucleoprotein, phosphoprotein, interaction, polymerase

¹Unité de Virologie Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France.
²EA3647 – EPIM, UFR des Sciences de la Santé Simone Veil – UVSQ, 2 avenue de la Source de la Bièvre, Montigny-Le-Bretonneux.
³Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, 25-28 rue du Docteur Roux, Paris, France.
⁴CNRS-UMR3528, Paris, France
⁵IBBMC, Université Paris-XI, Orsay, France.
⁶AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France.

#Corresponding author: Tel: (33) 1 34 65 26 40; FAX: (33) 1 34 65 26 21; email: jean-francois.eleouet@jouy.inra.fr
Abstract. The RNA genome of respiratory syncytial virus (RSV) is constitutively encapsidated by the viral nucleoprotein N thus forming a helical nucleocapsid. Polymerization of N along the genomic and anti-genomic RNAs is concomitant to replication and requires the preservation of an unassembled monomeric nucleoprotein pool. To this end, and by analogy with Paramyxoviridae and Rhabdoviridae, it is expected that the viral phosphoprotein P acts as a chaperon protein, forming a soluble complex with the RNA-free form of N (N₀-P complex). Here, we have engineered a mutant form of N which is monomeric, unable to bind RNA, still interacts with P, and could thus mimic the N₀ monomer. We used this N mutant designated Nmono as a substitute for N₀ in order to characterize P regions involved in the N₀-P complex formation. Using a series of P fragments, we determined by GST pulldown assays that the N- and C-termini of P are able to interact with Nmono. We analyzed the functional role of amino-terminal residues of P by site-directed mutagenesis, using an RSV polymerase activity assay based on a human RSV minireplicon, and found that several residues were critical for viral RNA synthesis. Using GST-pulldown and surface plasmon resonance assays, we showed that these critical residues are involved in the interaction between P[1-40] peptide and Nmono in vitro. Finally, we showed that overexpression of the peptide P[1-29] can inhibit the polymerase activity in the context of the RSV minireplicon, thus demonstrating that targeting the N₀-P interaction could constitute a potential antiviral strategy.

Importance. Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine or efficient antiviral treatment are available against RSV, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. RSV phosphoprotein P, the main RNA polymerase cofactor, is believed to function as a chaperon protein, maintaining N as a non-assembled, RNA free protein (N₀) competent for RNA encapsidation. In this paper, we provide the first evidence, to our knowledge, that the N-terminus of P contains a domain that binds specifically to this RNA-free form of N. We further show that overexpression of a small peptide spanning this region of P can inhibit viral RNA synthesis. These findings extend our understanding of the function of RSV RNA polymerase and point to a new target for the development of drugs against this virus.

Introduction
The human respiratory syncytial virus (HRSV) is the leading cause of severe respiratory tract infections in newborn children worldwide (1). HRSV infects close to 100% of infants within the first two years of life, and is the main cause of bronchiolitis. It is also recognized as a significant cause of severe respiratory infections in the elderly. The virus belongs to the Mononegavirales order and constitutes the prototype virus of the Pneumovirus genus of the Paramyxoviridae family. As for all the viruses belonging to the Mononegavirales order, its genome consists of a non-segmented negative strand RNA which is bundled by the nucleoprotein (N) within a helical nucleocapsid (NC) (2) and is thus protected from RNAses or cellular sensors involved in antiviral responses during infection. This ribonucleoprotein complex constitutes the template for viral transcription and replication by the viral RNA-dependent-RNA-polymerase (RdRp) (reviewed in (3)). Two main consequences ensue from this specific protection of the viral genome. First, the NC structure impairs the direct accessibility of the RNA to the viral polymerase (L). Although the viral phosphoprotein (P) acts as the main co-factor of the L polymerase, allowing the L/P complex to bind to NC through specific P-N interactions, the strategy developed to gain access to the viral genome still remains unclear. However, a recent study revealed that the N-terminal domain of P of Mumps virus (PNTD) binds the NC and should induce timely uncoiling of the helical NC (4). Second, protection of the viral genome requires a continuous supply of nucleoprotein during replication to encapsidate neo-synthesized single-stranded genomic RNA (-RNA) and anti-genomic RNA (+RNA). This suggests that N has to be prevented from binding to cellular RNAs, but also from self-oligomerizing. To this avail, and by analogy with other paramyxoviruses and rhabdoviruses, the RSV P protein is thought to play the role of a chaperone protein to maintain N in an unassembled and RNA-free form named N0, the capsid protein protomer (5). It is also expected that N0-P interaction involves domain(s) of P different than those involved in NC-P interaction, and that a specific N0 binding domain exists in the N-terminal region of RSV P. Recently, bio-informatics analysis of Mononegavirales P proteins revealed the presence of a motif within the first 40 amino acids of RSV P that could be involved in the specific interaction with the N0 protein (6).

For RSV, an N0-P complex had not yet been isolated and characterized. The RSV P protein is composed of 241 amino acids, and constitutes the shortest P protein among paramyxoviruses. Human RSV P (Long strain) is mainly phosphorylated at S232 (7), (8), although other minor phosphorylation sites have been identified (S30, S39, S45, T46, S54, T108, S116, S117, S119, S237) (9), (10). The precise role of phosphorylation for P activity remains unclear, since (i) unphosphorylated P is
competent for oligomerization and binding to N-RNA (11), (12), and (ii) substitution of all the phosphorylated residues has little effect on viral transcription and replication (13), (14). However, P phosphorylation could play a role in NC encapsidation in viral particles (13), (10). Although there is no sequence similarity between the P proteins of Pneumovirinae and other related families and subfamilies in the Mononegavirales order, all share similar organization, structure and functions. RSV P forms homotetramers of elongated shape and has a modular organization with a protease resistant central domain containing a predicted coiled-coil (aa 120-160) involved in oligomerization, flanked by two intrinsically disordered regions (1-120 and 161-241) (15), (11), (16), (17). The C-terminal region of P (aa 231-241) is involved in the interaction with the NC (12), (18). Some experiments performed with the close homolog bovine RSV (BRSV) P protein have suggested that the 161-180 region could also participate in N-P interactions (19), and that the N-terminus of P (residues 1-40) interacts with N (20).

Here, our aim was to determine and characterize the region(s) of P capable of binding to N and involved in the formation of a N⁰-P complex. We used the crystallographic structure of the decameric N-RNA rings (21) to rationally design N mutations to disrupt the interaction with RNA and thus destabilize the oligomeric organization of N-RNA rings. This work resulted in the purification of a recombinant double mutant N⁰K170A/R185A protein which (i) does not interact with nucleic acids, (ii) is monomeric, and (iii) still interacts with the P protein. We showed that N-terminal residues (1-29) of P are sufficient to bind to the monomeric N, and identified residues of P critical for this interaction. Our results strongly suggest that the P binding domain on N⁰ is a molecular recognition element (MoRE). Furthermore, using an RSV minireplicon, we found that overexpression of the peptide P[1-29] inhibits viral RNA synthesis.
MATERIALS AND METHODS

Plasmid constructions

All the viral sequences were derived from the human RSV strain Long, ATCC VR-26 (Genbank accession n° AY911262.1). The full length P gene, the sequences of P with N-terminal deletions, or internal domains of P were PCR-amplified using Pfu DNA polymerase (Stratagene, Les Ulis, France) (primers sequences available on request), and cloned into pGEX-4T-3 at BamHI-XhoI sites to engineer the pGEX-P plasmids. The C-terminal deletion mutants of P were obtained by introducing stop codons at the appropriate site in the coding sequence of pGEX-P, and point mutations K170A and R185A were introduced in pET-N-His by site-directed mutagenesis, using the Quikchange site-directed mutagenesis kit (Stratagene). pET-N and pET-N^K170A/R185A were used to produce N-derived proteins with a C-terminal poly-His tag. Sequence analysis was carried out to check the integrity of all the constructions.

Plasmids for eukaryotic expression of the HRSV proteins N, P, M2-1, and L designated pN, pP, pM2-1 and pL, have been described previously (12), (22). The pM/Luc subgenomic replicon which contains the firefly luciferase (Luc) gene under the control of the M/SH gene start sequence was derived from the pM/SH subgenomic replicon (23) and has been described previously (24). The replication-defective minigenome pM∆/Luc was constructed by deleting 24 nucleotides from the trailer region of the plasmid pM/Luc (25) (26). Point mutations were introduced in pP by site directed mutagenesis as described above. The plasmid pP[1-29] was generated by substituting residue 30 of P by a stop codon. The sequence coding for mCherry was fused in frame upstream of P[1-29] in order to generate the plasmid pmCherry-P[1-29].

Antibodies

The following primary antibodies were used for immunoblotting: a mouse monoclonal anti-N protein (Serotec, Oxford, UK), rabbit anti-P and anti-N antisera previously described (11), a mouse monoclonal anti-β-tubulin (Sigma). Secondary antibodies directed against mouse and rabbit Ig G coupled to HRP (P.A.R.I.S., Compiègne, France) were used for immunoblotting experiments.

Expression and purification of recombinant proteins
E. coli BL21 bacteria (DE3) (Novagen, Madison, WI) transformed with pGEX-P fragments plasmids were grown at 37°C for 8 h in 100 ml of Luria Bertani (LB) medium containing 100 μg/ml ampicillin. Bacteria transformed with pET-N-derived plasmids alone, or together with pGEX-P derived plasmids were grown in LB medium containing kanamycin (50 μg/ml) or ampicillin and kanamycin, respectively. The same volume of LB was then added and protein expression was induced by adding 80μg/ml isopropyl-β-D-thio-galactoside (IPTG) to the medium. The bacteria were incubated for 15 h at 28°C and then harvested by centrifugation. For GST-fusion proteins purification, bacterial pellets were re-suspended in lysis buffer (50 mM Tris-HCl pH 7.8, 60 mM NaCl, 1 mM EDTA, 2 mM DTT, 0.2% Triton X-100, 1 mg/ml lysozyme) supplemented with complete protease inhibitor cocktail (Roche, Mannheim, Germany), incubated for 1 h on ice, sonicated, and centrifuged at 4°C for 30 min at 10,000g. Glutathione-Sepharose 4B beads (GE Healthcare, Uppsala, Sweden) were added to clarified supernatants and incubated at 4°C for 15 h. Beads were then washed two times in lysis buffer and three times in PBS 1X, and stored at 4°C in an equal volume of PBS. To isolate GST-free P[1-40]-NK170AR185 complex, beads containing bound complex were incubated with biotinylated thrombin (Novagen) for 16 h at 20°C. Thrombin was then removed using the cleavage capture kit according to the manufacturer instructions (Novagen). For 6xHis fusion proteins purification, bacterial pellets were re-suspended in lysis buffer (20 mM Tris-HCl pH8, 500 mM NaCl, 0.1% TritonX-100, 10 mM imidazole, 1 mg/ml lysozyme) supplemented with complete protease inhibitor cocktail (Roche). After sonication and centrifugation, lysates were incubated for 1 h with chelating Sepharose Fast Flow beads charged with Ni²⁺ (GE Healthcare). Finally, beads were successively washed in the washing buffer (20 mM Tris-HCl, pH 8, 500 mM NaCl) containing increasing concentration of imidazole (25, 50, and 100 mM), and proteins were eluted in the same buffer with 500 mM imidazole. Purified recombinant N proteins were loaded onto a Sephacryl S-200 HR 16/30 column (GE Healthcare) and eluted in 20 mM Tris-HCl pH 8.5, 150 mM NaCl. The presence of RNA was determined by measuring the OD_{260}/OD_{280} nm absorption ratio which is 2 for pure RNA, and 0.57 for nucleic acid-free proteins.

Cross-linking analysis.

Purified recombinant N proteins were dialyzed against 20 mM Hepes pH 8.5, NaCl 150 mM and centrifuged for 10 min at 100,000 g. Samples containing 5 μg of protein were incubated with increasing amount of ethylene glycol disuccinate (EGS), for 30 min at 20°C. Reactions were stopped.
by the addition of glycine to a final concentration of 50 mM. The cross-linked products were analyzed by SDS-PAGE and silver staining.

Pulldown assays

GST or GST-P fragments fusion proteins fixed on beads were incubated in the presence of 30 µg of purified recombinant N proteins, in a final volume of 200 µl in Tris 20 mM pH8.5, NaCl 150 mM. After overnight incubation under agitation at 4°C, beads were extensively washed with Tris 20 mM pH8.5, NaCl 150 mM, boiled in 30 µl Laemmli buffer and analyzed by SDS-PAGE and Coomassie blue staining.

Cell culture and transfections

BHK-21 cells (clone BSRT7/5) constitutively expressing the T7 RNA polymerase (27) were grown in Dulbecco Modified Essential Medium (Lonza, Cologne, Germany) supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, and antibiotics. Cells were transfected using Lipofectamine 2000 (Invitrogen, Cergy-Pontoise, France) as described by the manufacturer.

Minigenome replication assay (minireplicon)

Cells at 90% confluence in twenty-four-well dishes were transfected with Lipofectamine 2000 (Invitrogen) with a plasmid mixture containing 0.25 µg of pM/Luc, 0.25 µg of pN, 0.25 µg of pP, 0.125 µg of pL, and 62.5 ng of pM2-1 (24) as well as 62.5 ng of pRSV-β-Gal (Promega) to normalize transfection efficiencies. Transfections were done in duplicate, and each independent transfection was performed three times. Cells were harvested 24 h post-transfection, then lysed in luciferase lysis buffer (30 mM Tris pH 7.9, 10 mM MgCl₂, 1 mM DTT, 1% Triton X-100, and 15% glycerol). Luciferase activities were determined for each cell lysate with an Anthos Lucy 3 luminometer (Bio Advance, Bussy Saint Martin, France) and normalized based on β-galactosidase (β-Gal) expression.

Isothermal titration calorimetry assays

Thermodynamic analysis of the P-N (wild type and NK170A/R185A) interactions was performed with a MicroCal ITC200 microcalorimeter (Microcal, Northampton, MA), at 20°C. For the interaction between wild type N and P, samples were dialyzed against 20 mM Tris-HCl pH 8.5, NaCl 150 mM. The P...
concentration in the microcalorimeter cell (200µl) was 60 µM, and a total of 20 injections of 2 µl of N solution (concentration 300 µM) were carried out at 180 s intervals, with stirring at 1000 rpm. For the interaction between NK170A/R185A and P, samples were dialyzed against 20 mM Tris pH 8.5, NaCl 150 mM, Glycerol 5%. The NK170A/R185A concentration in the microcalorimeter cell was of 38 µM, and a total of 20 injections of 2 µl of P solution (concentration 255 µM) were carried in the same conditions as above.

The raw data were integrated to generate curves in which the areas under the injection peaks were plotted against the ratio of injected sample to cell content. The data were analyzed according to the one-binding site model using the MicroCal ORIGIN software provided by the manufacturer. Changes in the free energy and entropy upon binding were calculated from determined equilibrium parameters using the equation:

\[-RT\ln(K_a) = \Delta G = \Delta H - T \Delta S\]

Were R is the universal gas constant, T is the temperature in Kelvin degrees, K\textsubscript{a} is the association constant, \(\Delta G\) is the change in Gibbs free energy, \(\Delta H\) is the change in enthalpy and \(\Delta S\) is the change in entropy. The binding constant is expressed as \(1/K_a = K_d\) for more clarity.

Circular Dichroism (CD) Spectropolarimetry

CD experiments were performed on a J-810 spectropolarimeter (Jasco, Tokyo, Japan) in a thermostated cell holder at 20°C. Purified recombinant N proteins were dialyzed against 5 mM phosphate, 100 mM NaF, pH 8.5. Far-UV spectra (180-260 nm) were recorded using a bandwidth of 1 nm and an integration time of 1s, with proteins at concentrations of 20 µM. Each spectrum was the average of 6 scans, with a scan rate of 100 nm/min. The spectra were corrected by subtracting the signal from the buffer, were smoothed using the FFT filter (Jasco Software, Tokyo, Japan) and were treated as previously described (28).

Surface plasmon resonance (SPR) assays

Real-time SPR assays were carried out using a ProteOn XPR36 (BioRad) instrument equilibrated at 25°C in 20 mM TrisHCl pH 8.5, 150 mM NaCl, 5% glycerol, 0.01% Tween20. A goat anti-GST antibody (Biacore GST Capture Kit) was covalently coupled to a GLC sensorchip, using the Amine Coupling Kit (GE Healthcare), reaching an immobilization density of around 4500 resonance units.
(RU; 1RU = 1 pg.mm⁻²). The antibody-functionalized surface was used to capture tightly GST-fused
P[1-40] mutants (or GST as a control) to a density of 100-160 RU, or GST (800 RU) as a control. Nmono
(19 µM, 6.33 µM, 2.1 µM, 703 nM, and 234 nM) was then injected in duplicate over the GST– P[1-40]
(wild type or mutants) and GST surfaces for one minute at a flow rate of 50 µl.min⁻¹. The surfaces
were then regenerated by washing with a 10mM glycine–HCl (pH 1.5) for 2 minutes and 0.05% SDS
for 1 minute. The real-time interaction profiles were double referenced using the ProteOn manager
software (BioRad), that is both the signals from the reference surface (with GST captured on the anti-
GST antibody) and from buffer blank experiments were subtracted. The SPR steady-state responses
were plotted against the Nmono concentration and fitted using the Proteon Manager 3.1 software
(BioRad).
RESULTS

Generation of a monomeric, RNA-free mutant of N

In order to characterize the region of P that specifically interacts with N to maintain it in an RNA-free form, named N₀, one must first be able to obtain such an RNA-free N₀ monomer. This is not a straightforward task given that, when expressed in bacteria alone or together with P, the RSV N protein can only be purified in the form of soluble 10-mer and 11-mer rings containing RNA (12). In order to isolate the N₀ monomer, we designed a strategy to prevent N from interacting with RNA. This strategy was based on the hypothesis that N oligomerization is coupled or directly linked to RNA binding. Based on the crystal structure of N (21), residues K170, D175, R184, R185, Y337 and R338 of N, which are known to be involved in the interaction with RNA, were substituted (alone or combined) by alanine (Fig. 1A). Mutant N proteins with a C-terminal hexa-His tag were expressed in E. coli, purified and screened for their capacity to bind RNA by measuring the OD₂₆₀/OD₂₈₀ nm absorption ratio. We thus selected the double mutant Nₖ₁₇₀ₐ₅₁₈₅ₐ, for which the observed OD₂₆₀/OD₂₈₀ was 0.6 (compared to 1.44 for N-RNA rings), confirming the absence of RNA. Purified recombinant wild type N and Nₖ₁₇₀ₐ₅₁₈₅ₐ were then loaded onto a S200 column. The Nₚ was found to elute from the column in one single peak with an apparent molecular weight of ~ 500 kDa, as expected for N-RNA rings (Fig. 1B). The Nₖ₁₇₀ₐ₅₁₈₅ₐ eluted mainly in one peak with an apparent molecular weight of ~ 50 kDa, as expected for the monomeric form of N (44 kDa). The gel filtration profile of Nₖ₁₇₀ₐ₅₁₈₅ₐ also revealed the presence of minor peaks corresponding to higher molecular masses likely due to partial aggregation (Fig. 1B). To confirm the monomeric state of purified Nₖ₁₇₀ₐ₅₁₈₅ₐ recombinant protein, we performed cross-linking assays. Purified N-RNA rings and Nₖ₁₇₀ₐ₅₁₈₅ₐ proteins were cross-linked by increasing concentrations of EGS. As revealed in Fig. 1C, both forms of N were purified to homogeneity (> 95%) and migrated in SDS-polyacrylamide gel with an expected apparent molecular mass of 44 kDa. For N-RNA rings, bands migrating with apparent masses of ~ 80 kDa, ~ 120 kDa, and higher molecular weight (> 300 kDa) appeared upon increasing EGS concentration. These masses are compatible with N dimers, trimers and bigger oligomers, respectively. In the same conditions, no cross-linked products were observed for the Nₖ₁₇₀ₐ₅₁₈₅ₐ protein, and we thus concluded that this mutant was present as a monomer. Finally, the folding of purified Nₖ₁₇₀ₐ₅₁₈₅ₐ recombinant protein was analyzed by circular dichroism (CD). As shown on Fig. 1D, far-UV CD spectra of N-RNA rings and...
NK170A/R185A were similar and presented one positive peak at 190 nm and two negative peaks at 208 and 222 nm, typical of secondary structures with a mainly α-helical content. These results thus show that no major secondary structure change occurs in the mutated NK170A/R185A variant with respect to the N-RNA state.

Altogether, our data show that the NK170A/R185A recombinant protein (i) does not interact with nucleic acids, (ii) is monomeric, and (iii) presents a secondary structure similar to the wild type N. We thus used this mutant, which was designated N$^{\text{mono}}$, as an N0 substitute for further experiments.

Stoichiometry and thermodynamics of the P-N interactions followed by ITC

We investigated the interaction between P and N-RNA rings or N$^{\text{mono}}$, using isothermal titration calorimetry (ITC). This approach can give access to the stoichiometry of complexes, their equilibrium constants (K_D) and the variation of enthalpy (ΔH) and entropy (ΔS) associated with complex formation (29). For the couple N-RNA/P, the P protein was loaded into the calorimeter sample cell and titrated with N-RNA rings. Due to the propensity of N$^{\text{mono}}$ to aggregate at high concentration, the corresponding titration for the N$^{\text{mono}}$/P couple was performed by loading N$^{\text{mono}}$ into the calorimeter sample cell and P in the titration syringe. Binding isotherm titrations of both couples are exothermic, as shown by the negative heat flow patterns (Fig. 2, upper panels). Integration of the heat flow revealed that N-RNA and P form a 0.5:1 stoichiometric complex with a K_D of ~2.5 µM, whereas P binds to N$^{\text{mono}}$ with a stoichiometry of 1:1 and a K_D of ~0.8 µM (Fig. 2). Taking into account the tetrameric state of P, the stoichiometries determined for both P-N couples suggest that one tetramer of P could interact with two N protomers in the context of N-RNA, whereas the N0-P complex would consist of one P tetramer bound to four N0. These data also revealed that the N-RNA/P interaction is driven by both enthalpic and entropic components ($\Delta H = -3.25$ kcal/mol, and $-T\Delta S = -4.25$ kcal/mol). As for the N$^{\text{mono}}$/P interaction, it is driven by a strong favorable enthalpy ($\Delta H = -14.43$ kcal/mol), partially compensated by an unfavorable entropic contribution ($-T\Delta S = 6.47$ kcal/mol). This last observation suggests that N$^{\text{mono}}$/P interaction could involve some degree of structural reorganization.

N- and C-terminal extremities of P interact with N$^{\text{mono}}$ in solution

Next, to identify the domain(s) of P capable of binding to N$^{\text{mono}}$, we performed GST pulldowns of purified N$^{\text{mono}}$ protein using serial deletions of P fused with GST. Based on previous mapping of the
oligomerization domain of P between residues ~ 120 and ~ 160 (11), (16), (30), (17), different
fragments of P corresponding to the N- and C-terminal domains of P including or not the
oligomerization domain were fused to GST (Fig. 3A). GST-P fusion proteins bound to glutathione-
Sepharose beads were then incubated with Nmono purified separately (Fig. 3B, left panel). Analysis of
the interactions between GST-P proteins and Nmono revealed the presence of two binding sites on P
(Fig. 3B, right panel). First, the C-terminal domain of P alone or associated with the oligomerization
domain (GST-P[127-241] and GST-P[161-241] constructs) interacted with Nmono, and deletion of the
last 12 C-terminal residues of P (GST-P[127-229]) was sufficient to abrogate this interaction.
Secondly, Nmono was also capable of interacting with GST-P[1-163], including the N-terminal domain of
P and the oligomerization domain. Of note, the interaction between Nmono and this construct could not
be detected at first, because GST-P[1-126] and N have a similar apparent molecular weight when
analyzed by SDS-PAGE. However, this interaction was validated after separating P[1-126] and the
GST tag by thrombin cleavage (Fig. 3C). Finally, no N-P interaction was observed with GST-P[60-
126], suggesting that the second Nmono binding domain is located upstream of residue 60 of P (Fig.
3B). To confirm these results, and since the last ten C-terminal amino acids of P (231-241) were
previously shown to be implicated in the interaction with N-RNA (12), (21), we compared GST-
pulldown of either N-RNA rings or Nmono with GST-P[1-230] and GST-P[231-241]. As shown in Fig. 3D,
GST-P[231-241] interacted with both N-RNA and Nmono, confirming that the last 10 C-terminal residues
of P are sufficient to interact with both forms of N. On the other hand, GST-P[1-230] only interacted
with Nmono.

Altogether, these results suggest the presence of two N binding sites on P, the first one
located in the C-terminal domain of P (P\textsubscript{CTD}) and capable of binding to both N-RNA and Nmono, the
second one located in the N-terminal domain of P (P\textsubscript{NTD}) and specific for Nmono.

Determination of the minimal N-terminal domain of P required for interaction with Nmono

We then focused on the characterization of the minimal N-terminal domain of P required for
Nmono binding. To this end, Nmono was co-expressed in bacteria with N-terminal fragments of P (P\textsubscript{Δ})
fused with GST, and the ability of Nmono to copurify with GST–P\textsubscript{Δ} proteins was evaluated by SDS-
PAGE and Coomassie blue staining (Fig. 3E). Our data showed that Nmono co-purified with GST-P[1-
29] and GST-P[1-40], but not with GST-P[1-10], GST-P[1-20], GST-P[10-30] or GST-P[10-40]. These
results revealed that an Nmono specific binding site is located between amino acids 1-29 of P. It is noteworthy that residues 1-10, if not sufficient to interact with Nmono, are required for the interaction. Finally, we observed that Nmono also copurified with GST-P[231-241] used as a control, but less efficiently than with GST-P[1-29] and GST-P[1-40], in a reproducible way.

This last observation led us to determine whether the N- and C-terminal domains of P can bind concomitantly to Nmono. We performed GST pulldowns with GST-P[161-241] using either separately purified N-RNA rings, Nmono, or the P[1-40]+Nmono complex. Analysis of the interactions by SDS-PAGE revealed that GST-P[161-241] can interact with both N-RNA rings and Nmono, although this last interaction seemed weak (Fig. 3F). On the contrary, no interaction was observed between GST-P[161-241] and the preformed P[1-40]+Nmono complex. These data revealed that binding of P[1-40] to the monomeric N inhibited the binding of the C-terminus of P. However, the N[31-252] domain, which was previously shown to contain the binding site for P\textsubscript{CTD} (18), did not co-purify with GST-P[1-40] (not shown). It is thus unlikely that P\textsubscript{NTD} and P\textsubscript{CTD} bind to the same pocket on N.

In conclusion these results show that the first 29 N-terminal and the last ten C-terminal residues of P can independently bind to the RNA-free N monomer. However, although two distinct P binding sites exist for Nmono in solution, the interaction with the P\textsubscript{CTD} appears weaker, and binding of the P\textsubscript{NTD} inhibits the interaction with the P\textsubscript{CTD}.

Effect of N-terminal mutations of P on RNA polymerase activity

Based on these results, we investigated the potential role of N-terminal residues (1-29) of P on the polymerase complex activity by site-directed mutagenesis using an RSV plasmid-based minireplicon system (24). Preventing the formation of a N3-P complex competent for genomic or antigenomic RNA encapsidation would result in a decrease of N-RNA template formation and amplification, and therefore also of mRNA transcription and expression of the luciferase (Luc) reporter. We substituted one by one residues E2 to F28 of P by alanines (excepted residues Ala5, Ala13, and Ala17) and we tested the functionality of these P mutants within the polymerase complex. As shown in Fig. 4A, among these 24 mutants, 11 displayed a reduction of Luc activity of about or less than 50% compared to the wild type P protein. The E2A, F4A, F8A, G10A, and F20A substitutions had the strongest effect, with a reduction of 80-90% of polymerase activity. As assessed by Western blot, all P
mutants displaying a reduction of Luc activity were expressed in similar amounts in BSRT7/5 cells compared to wild type P protein (Fig. 4B).

These data revealed that the 11 residues E2, F4, E7, F8, G10, F20, L21, E22, K25, and G26 are critical for polymerase activity, and could be directly involved in the interaction between P and the monomeric RNA-free N protein. These results also suggest the presence of two potential critical stretches of residues, one located between residues E2-G10, and the second between residues F20 and G26.

Identification of N-terminal residues of P involved in the interaction with the Nmono

We therefore attempted to determine whether the drop in polymerase activity induced by substitutions in the E2-F28 region of P was correlated to a defect of interaction between P and monomeric N. Mutations of all the residues E2 to F28 were introduced into the plasmid expressing GST-P[1-40], to generate 24 mutant proteins. The Nmono mutant protein was co-expressed with the wild type or mutant forms of GST-P[1-40] in *E.coli* and purified by using GST tag. Purified complexes were analyzed by SDS-PAGE. Mutations F4A, F8A, G10A, F20A, L21A and I24A totally or nearly abrogated the interaction of GST-P[1-40] with Nmono (Fig. 5). The substitutions E7A and K25A attenuated partially the interaction compared to the wild type P[1-40]. The other mutations, and more specifically E2A, E22A, and G26A which were shown to induce a decrease of polymerase activity, did not significantly modify the interaction between P[1-40] and Nmono.

In order to confirm these results and to quantify the impact of P mutations E2A-G10A and F20A-G26A on the interaction with Nmono, we then characterized the specific interaction between GST-P[1-40] (wild type or mutants) and Nmono by surface plasmon resonance (SPR). GST-P[1-40] proteins were captured on an anti-GST antibody surface and serial dilutions of Nmono were injected. We first characterized the specific interaction between wild type GST-P[1-40] and Nmono. The interaction was transient, with a very fast dissociation rate and a Kd of 4-5 µM (Fig. 6 and 8). Similar affinities were obtained for mutants K3A, P6A, H9A and S23A. Mutations F8A and F20A had the strongest effect on the interaction with Nmono, with calculated K\textsubscript{D}S of 41 µM and > 100 µM, respectively. The affinity for Nmono was also affected by mutations of residues F4, E7, L21, and I24 (10 µM < K\textsubscript{D} < 20 µM), and to a lesser extent by mutations of residues G10, E22 and K25 (5 µM < K\textsubscript{D} < 10 µM). Finally, the affinity of GST-P...
P[1-40] for Nmono was increased nearly two-fold by mutations E2A and G26A, with K_Ds of 1.9 µM and 2.6 µM, respectively.

Altogether, these results reveal that the 11 residues of P previously identified as critical for polymerase activity are directly involved in the interaction with the soluble monomeric RNA-free N protein.

Overexpression of peptide P[1-29] inhibits viral RNA synthesis.

In our minireplicon system, replication and transcription of RNA by RSV RdRp relies on the correct encapsidation by N0 of both minigenome and anti-minigenome and the formation of a RNA-N template. It is thus expected that inhibition of the formation of a N0-P complex, which is competent for RNA encapsidation, would result in a decrease of RNA synthesis as Luc expression. Likewise, it is expected that, by binding to N0, a short peptide corresponding to the N-terminal domain of P could compete with full-length P and inhibit the formation of a N0-P complex and so RNA replication and transcription. To evaluate whether P[1-29] could interfere with RSV RNA synthesis, a plasmid encoding P[1-29] was transfected in BSRT7/5 cells in the context of the minireplicon. RdRp activity assayed by measuring Luc activity was reduced in a dose dependent manner by P[1-29] expressing plasmid (Fig. 7A). Similar results were obtain when using a plasmid encoding mCherry-P[1-29] (Fig. 7A), for which expression can be easily visualized by epifluorescence.

To test whether P[1-29] could interfere with RSV transcription, we used a altered minireplicon (pMΔ/luc) with a deleted trailer sequence, still efficient for transcription but defective for replication. Hence, using this system, the Luc activity should only reflect the transcription activity. As previously observed (26) (25), Luc activity was reduced to less than half level when using the pMΔ/Luc vector compared to pM/Luc (Fig. 7B). We then performed a minigenome replication-defective assay in the context of plasmid expressing mCherry-P[1-29], using a pmCherry-P[1-29]/pP ratio of 1.5. Expression of the mCherry-P[1-29] peptide reduced the transcriptional activity to 50% (Fig. 7C). Thus, the short peptide P[1-29] is capable of inhibiting both RNA replication and transcription by RdRp in mammalian cells.
DISCUSSION

Strategy to obtain an RSV N₀-like protein

By analogy with Paramyxovirinae and Rhabdoviridae, it is assumed that pneumovirus replication requires a constant supply of monomeric, unassembled N (N₀) to encapsidate neo-synthesized single-stranded genomic RNA (-RNA) and anti-genomic RNA (+RNA) (31). However, when expressed alone in mammalian cells, insect cells or in bacteria, nucleoproteins of Mononegavirales bind to cellular RNA and form only stable RNA-N complexes (for a review, see (5)). The phosphoprotein P plays a critical role in maintaining N₀ unassembled during infection. However, purification of N₀-P complexes is tricky and the existence of this theoretical complex has never been shown for RSV or other pneumovirus. Structural characterization of the RSV N₀-P complex constitutes a major challenge. It could be useful to gain insight into the mechanisms of regulation that sustain the switch between N₀ and N-RNA, but also to develop a rational search for inhibitors targeting this complex.

Among Mononegavirales, the crystal structure of N₀-P complexes have been resolved for one rhabdovirus (VSV) and one paramyxovirus (Nipah virus), allowing to clarify the role of P as a chaperone protein (32), (33). For VSV, the complex was reconstituted in vitro after purification of a recombinant N protein deleted of its 21 N-terminal residues that was monomeric although still capable of interacting with RNA (32). A second step consisted in displacing RNA by a peptide P[1-60] corresponding to residues 1-60 of the P protein. The crystal structure of this complex revealed that the binding domain of P[1-60] on N partially overlaps the RNA binding site, and that the N-terminus of P blocks the backside groove of N, preventing N oligomerization. For Nipah virus, the structure of a complex between a monomeric N mutant with its N- and C-termini deleted and a peptide corresponding to the sequence of the 50 N-terminal residues of P was also obtained (33). In this complex the N terminus of P was shown to interact only with the C-terminal domain of N. In this case, the binding of P should prevent N oligomerization and keep the N₀ in an open conformation ready to interact with RNA. Finally, although the N₀-P of RSV has not yet been characterized, a RNA-free N protein has been isolated by deletion of the first 12 N-terminal residues ((34).

In the present study, based on the crystallographic structure of RSV RNA-N rings (21) and on the hypothesis that preventing RNA binding would also prevent N oligomerization, we generated the RNA-free N mutant protein K170A/R185A. This recombinant N mutant protein was shown to be monomeric at concentrations up to 40 µM (Fig. 1B, C). This result shows that disrupting N-RNA
interactions can partially prevent RSV N self-oligomerization. This first observation supports the debated theory according to which N RNA-binding and oligomerization are coupled (35), (5), (36). We have also shown that this RNA-free N protein presents a secondary structure similar to that of N assembled with RNA (Fig. 1D). Therefore it is expected that the switch between N0 and N-RNA does not require major secondary structure changes. This result is in agreement with those obtained for VSV and Nipah virus (32), (33), for which it was shown that, when compared to the oligomerized RNA-bound form of N, N- and C-terminal globular domains of N0 present similar structures. Finally, the RSV recombinant NK170A/R185A mutant can still interact with the P protein. This last observation strongly suggests that residues K170 and R185, which are located in the RNA groove of N and are critical for RNA binding, are not critical for N0-P interaction. Thus, a different set of residues should be involved in RNA binding and in P binding. Since bacterial expressed recombinant RSV P protein is not phosphorylated, these results also show that P phosphorylation is not required for N0-P complex formation.

P-N stoichiometries

Interactions between P and N-RNA rings or N\textsubscript{mono} protein were compared by isothermal titration calorimetry (Fig. 2). The calculated stoichiometry for both binding pairs suggests that one tetramer of P could interact with two N protomers in the context of NC, whereas it could interact with four N0. Recently, an analytical ultracentrifugation experiment and small-angle X-ray scattering (SAXS) study of the entire VSV N0-P complex suggest that a dimer of P associates with only one N0 (36). Therefore, our results suggest that N0-P complexes of RSV and rhabdoviruses do not have the same stoichiometry. Isothermal titration calorimetry experiments also revealed that P presents similar affinities for both N-RNA and N\textsubscript{mono} proteins. The calculated K\textsubscript{D} for these two N-P interactions are in the micromolar range. It is postulated that, as a general feature for Mononegavirales, RSV replication requires the switch from N0-P to N-RNA-P, P freeing N0 for RNA encapsidation just after its synthesis next to the replicase L-P. It is thus expected that such a mechanism requires low affinities between P and N. It is worth noting that, based on our results, we cannot exclude that a tetramer of P could concomitantly interact with N0 and NC.

A N0-specific binding domain is located at the N-terminus of P
In parallel, identification of the N_{mono} binding domain on P was investigated by either co-incubating or co-expressing GST-fused P fragments with N. Altogether, the data demonstrated that the RNA-free N monomer presents binding sites for both P_{CTD} and P_{NTD}, and that the oligomerization domain of P is not required for these interactions (Fig. 3). Furthermore, the binding of P_{NTD} to N^{mono} is specific of the N monomer as no binding was observed with N-RNA rings. These results also revealed that the 10 C-terminal and the 29 N-terminal residues of P are sufficient to interact with N^{mono}. The interaction between N^{mono} and the C-terminus of P correlates with recent data from Shapiro <i>et al.</i> who showed that the C-terminus of P binds to a monomeric RNA-free protein N protein, deleted from the 12 first N-terminal residues (37). However, we have further shown that P_{CTD} binds very poorly to N^{mono}, and that binding of the P_{NTD} to N^{mono} impairs the binding of P_{CTD} (Fig. 3F). This last observation correlates with ITC data, since the experimental titration curve of N^{mono} by P can be fitted well assuming a single binding site (Fig. 2B). Two hypotheses could explain these observations. First, P_{CTD} and P_{NTD} could bind to the same site of N. However, the N_{NTD} truncated variant which was previously shown to contain the P_{CTD} binding site (18) did not co-purify with P_{NTD} (not shown). This result strongly suggests the existence of two distinct P binding sites on N^{mono}. This observation is supported by the fact that P_{NTD} and P_{CTD} do not present sequence homologies. It is thus unlikely that these domains interact with the same N binding site. However, we cannot exclude the possibility that the P_{NTD} binding site partially overlaps the P_{CTD} binding site on N. Furthermore, although the N_{NTD} is a globular, alpha-helical domain that should not undergo major conformational changes between N⁰ and N-RNA forms, P_{NTD} binding on N^{mono} could induce a local conformational change that renders the P_{CTD} binding site inaccessible. In any case, our results concerning the RSV N⁰-P_{NTD} interaction are in agreement with data obtained previously with BRSV showing a direct interaction between P_{NTD} (residues 1-40) and N using the yeast two-hybrid system (20). Since P and N are highly conserved between BRSV and HRSV, it is likely that P_{NTD} is the main N⁰ binding site for both viruses. Our results are also supported by data from the literature. Indeed, using sensitive sequence similarity search programs, Karlin <i>et al.</i> (6) found that all <i>Paramyxovirinae</i> share a short conserved motif in the first 40 amino acids of P (aa 11-26), which was called the soyzu motif, and should be involved in N⁰ binding. Conserved motifs were also found within <i>Pneumovirinae</i> (mir motif), <i>Filoviridae</i> (sputnik motif) and <i>Rhabdoviridae</i>. The presence of N⁰ binding domains within the N-terminus of P was confirmed by experimental data for
SeV (residues 33 to 41) (38), HPIV3 (first 40 N-terminal residues) (39), RABV (residues 4-40) (40), VSV (residues 11-30) (41) and for Nipah virus (residues 1-35) (33).

The N°-binding domain of P could fold upon interaction

Based on our results, we then focused on the characterization of the N°_{mono} binding domain located at the N-terminus of P and more specifically on the potential involvement of residues 1-29 of P in the N°_{mono}-P interaction by Ala scanning (Fig. 8A). Since this interaction is required for maintaining N in a RNA-free form (N°) competent for RNA encapsidation and formation of a RNA-N template used for replication and transcription, we first used the functional HRSV minireplicon system to screen for residues critical for polymerase activity. This approach highlighted the critical role of 11 residues of P, located between residues E2-G10 and F20-G26 (Fig. 4A). None of these mutations fully abolished RNA synthesis. Pull-down and SPR experiments were then combined to determine whether the effect of mutations on viral RNA synthesis correlated with a defect in N°_{mono}-P interaction. Using these approaches, we confirmed that the Ala substitution of the 9 residues F4, E7, F8, G10, F20, L21, E22, I24 and K25 totally or partially altered the N°_{mono}-P interaction, whereas mutations of residues E2 and G26 increase the affinity of N°_{mono} for the N-terminus of P (Fig. 8A). These data highlight a direct role of these 11 residues in the interaction with the putative N°. The localization of these critical residues suggests the presence of two main domains of interaction of P on N°, located between residues E2-G10 and F20-G26, and separated by a stretch of 9 residues. The structural study of P have predicted the presence of an α-helix in the region D12-F20 (16), and, as previously evoked, the N° binding site was predicted to be located between residues 11 and 26 (6).

Taking into account these data, and the periodicity (i, i+3 ; i, i+4) of the critical residues F20-G26 of P, we thus modeled a putative short α-helix between residues E11 to F28 (Fig. 8B). This representation shows that residues F20, L21, I24 and K25 for which mutation strongly affected the interaction with N°_{mono} should be located on the same side of the putative helix. It is worth noting that the unfavorable entropic contribution determined by ITC for the N°_{mono}/P interaction also argues for the involvement of structural constraints during the establishment of the interaction, which could be explained by the folding of the N-terminus of P. Such a mechanism of folding of intrinsically disordered regions upon interaction has already been described for other paramyxo- viruses such as measles virus (reviewed in (42)) and for the rhabdovirus VSV N°_{mono}-P interaction. More precisely, the NMR study of the
N-terminal domain of VSV P protein revealed that it contains two transient α-helices (43), which were subsequently shown to constitute molecular recognition elements (MoRE) for the interaction with N⁰ (32). A MoRE is a small segment of a protein that is intrinsically disordered but folds upon binding to a molecular partner (44). Thus, the N-terminal domain of the RSV P protein, which is located in a predicted disordered region extending from residue 1 to ~120, could contain such a MoRE.

The N⁰-binding site as a potential target for antiviral compounds

Because P plays a central role in the functioning of the RNA polymerase, this protein could be a target of choice for antiviral strategies aiming to destabilize the complex and inhibit viral replication. We have demonstrated that co-expression of the peptide P[1-29] encompassing the N⁰ binding site together with the minireplicon is sufficient to inhibit the replication activity of the polymerase complex, in a dose dependent manner. This small peptide thus constitutes an interesting basis to develop antiviral approaches. A proof of concept has already been developed for rabies virus (45) and more recently for Nipah virus (33), for which peptides that mimic the N-terminus of the P protein were shown to present an antiviral effect. In addition, a study describing the prevention of nasopulmonary infection by mucosal delivery of a peptide that interferes with the fusion step of RSV (46) demonstrates the power of similar antiviral strategies.

Conserved mechanisms among Mononegavirales for RNA encapsidation

Altogether, the data presented here demonstrate for the first time that RSV P can bind to an RNA-free, monomeric form of N, thus forming an N⁰-P-like complex, and reinforce previous observations that the P proteins of Rhabdoviridae, Paramyxovirinae and Pneumovirinae share similar functions and modular organization, although they have no detectable sequence similarity. All the P proteins are oligomeric and contain intrinsically disordered regions upstream and downstream of the oligomerization domain. From a functional point of view, they interact with many partners including the L polymerase, N-RNA and N⁰, the main nucleocapsid (RNA-N) and N⁰ binding domains being located at the C- and N-terminus of P, respectively. However, a study of the P-N interaction of MuV recently reopened the debate concerning the role of P as a chaperone (4). Using electron microscopy, the authors have indeed shown that incubation of the P⁰NTD with nucleocapsid (NC) induces uncoiling of MuV NC. They also showed that both P⁰NTD and P⁰CTD bind to the NC, and that overexpression of the
P_{NTD} in cells increases the polymerase activity. These two results are different from our data since RSV P_{NTD} did not bind to N-RNA rings whereas P_{NTD} and P_{CTD} can both bind to N^{mono}, and that overexpression of P_{NTD} led to a decrease of the RSV polymerase activity.

Finally there seems to be a fundamental difference between Paramyxoviridae and Rhabdoviridae concerning the organization of the functional domains of the P protein. Indeed, the L binding site has also been localized in the N-terminal part of rhabdovirus P protein (47), (48). For rabies virus (RABV), it was proposed that these two functional domains do not overlap but are juxtaposed, composed of residues 4 to 40 for N⁰ and 40 to 70 for L. In contrast, for Paramyxoviridae, the L main binding site has been localized at the C-terminus of P (49), (50), but the N-terminus of P could also bind to L (38). Although the L binding domain of RSV doesn’t appear to be located in the N-terminal region of P, but rather in either the oligomerization domain or C-terminal region (19), (30), it would be worthwhile to revisit this issue, since it could be of importance to fully understand the mechanism of N⁰ release by P in the context of L and RNA synthesis.

Acknowledgements

We thank John Barr and David Karlin for critical reading of the manuscript, Origène Nyanguile and Christina Sizun for helpful discussions, and Damien Vitour for providing polyclonal rabbit anti-N antibody. Molecular graphics images were produced using Pymol software. This work was carried out with the financial support of the French Agence Nationale de la Recherche, specific program ANR Blanc 2011 “Bronchioliteaser” (ANR-11-BSV8-0024).

REFERENCES

Figure legends

Figure 1: Characterization of the N^{K170A/R185A} recombinant protein. (A) Close-up view of the N-RNA interactions based on the 3D crystal structure (Protein data bank file 2WJ8). The N_{NTD} and N_{CTD} domains of the N protein are colored respectively in yellow and red, and residues implicated in the interaction with RNA are colored in blue. RNA is displayed in grey. Mutated residues K170 and R185 are in bold letters. (B) Gel filtration elution profiles of N^{wt} (blue) and N^{K170A/R185A} (red). (C) Chemical cross-linking of N proteins. Samples of 5 µg of purified N proteins were subjected to cross-linking with increasing concentrations of EGS as indicated above each lane. The reaction products were resolved by SDS-PAGE and silver stained. Molecular mass markers are indicated (kDa). (D) Far-UV CD spectra showing the absence of significant conformational changes between N-RNA rings (blue) and monomeric N^{K170A/R185A} (red).

Figure 2: Isothermal titration calorimetry characterization of complex formation between RSV P protein and N^{wt} (A) and N^{mono} (B). Panel (A) shows the data obtained with the following initial concentrations: 60 µM P (cell) and 300 µM N-RNA (syringe). Panel (B) shows the data obtained with the following initial concentrations: 38 µM N^{mono} (cell) and 255 µM P (syringe). Upper panels correspond to heat flow traces produced by injections of N (A) and P (B), respectively. Each peak corresponds to the injection of 2 µl of proteins into the ITC reaction cell at 20°C. Graphs shown in the bottom part of each panel correspond to integrated and corrected ITC data fit to a single site model. The filled squares represent the experimental data and the solid lines correspond to the fitted model. The derived equilibrium constant (K_D) as well as the stoichiometric ratio (N) are indicated.

Figure 3: Deletion mapping of N^{mono} binding domain(s) on P. (A) Schematic illustration of the wild type and the truncated RSV P proteins used in this study. The oligomerization domain of P is represented as a grey box and numbers indicate amino acid positions. Deletion mutants of P harboring a GST tag at the N-terminus were purified on glutathione-Sepharose beads and incubated in the presence of N^{mono}. For each deletion mutant, the ability to interact with N^{mono} is summarized on the right. (B, C, D) GST-P-derived proteins were analyzed by SDS-PAGE before or after incubation with N^{mono} (B, C) or N-RNA rings (D), as indicated. (C) For GST-P[1-126], the presence of N^0 after
pulldown was verified after thrombin cleavage of GST tag (P, purification products; S and B, supernatant and beads after thrombin cleavage, respectively) (E, F) Identification of the minimal domain of P involved in the interaction with the Nmono. (E) Analysis of co-purification products of Nmono with P[231-241] and N-terminal fragments of P (GST-PΔ). (F) Study of the fixation of both N- and C-termini of P on the Nmono. Recombinant N-RNA rings, Nmono, or P[1-40]+Nmono complex were incubated with GST or GST-P[161-241] bound to beads, and interactions were analyzed by SDS-PAGE and Coomassie blue staining.

Figure 4: Identification of N-terminal residues of P critical for RSV polymerase activity. (A) Polymerase activity assays in the presence of P mutants. BSRT7/5 cells were transfected with plasmids encoding the WT N, M2-1 and L proteins, the pMT/Luc minigenome, and WT or mutant P proteins, together with pCMV-βGal for transfection standardization. Viral RNA synthesis was quantified by measuring the Luc activity after cell lysis 24 h after transfection. Each luciferase minigenome activity value was normalized based on β-galactosidase expression and is the average of three independent experiments performed in triplicate. Error bars represent standard deviations calculated based on three independent experiments made in triplicate. (B) Western blot analysis showing efficient expression of P mutant (E2A to G10A, and F20A to G26A) proteins in BSRT7/5 cells.

Figure 5: Identification of N-terminal residues of P involved in the interaction with Nmono. Co-purification of Nmono with GST-P[1-40] mutants from E. coli. GST-P[1-40] constructs (wild type or mutants E2A to F28A) were co-expressed with Nmono protein in bacteria and complexes were pulled down using the GST tag. Interaction of Nmono with P[1-40] mutants was analyzed by SDS-PAGE and Coomassie blue staining.

Figure 6: Characterization of Nmono binding to GST-P[1-40] mutants by SPR. Real-time association and dissociation profiles corresponding to the injection over immobilized GST-P[1-40] (wild or mutants) of Nmono at 6.3 µM. (A) Comparison of profiles for wild type P[1-40] and mutants of similar (K3A, P6A, H9A, and S23A) or higher (E2A and G26) affinity for Nmono. (B) Comparison of profiles for wild type P[1-40] and mutants of lower affinity for Nmono (F4A, E7A, F8A, G10A, F20A, L21A, E22A, I24A, and K25A).
Figure 7: Inhibition of RSV replication by P[1-29]. (A) BSRT7/5 cells were transfected with pP, pN, pM2-1, pL plasmids and pM/Luc, together with pCMV-βGal for transfection standardization, and various ratios of pP[1-29]/pP or pmCherry-P[1-29]/pP. (B) Comparison of Luc activity using pM/Luc and pMD/Luc vectors coding for replication-competent and replication-defective minigenomes, respectively. (C) Replication-defective minigenome assay with a pmCherry-P[1-29]/pP ratio of 1.5. Viral RNA synthesis was quantified by measuring the Luc activity after cell lysis 24 h after transfection. Each Luc activity value was normalized based on β-galactosidase expression, and is the average of three independent experiments performed in duplicate. Error bars represent standard deviations calculated based on three independent experiments made in duplicate.

Figure 8: Sequence of the N-terminus of P and summary of effects of point mutations on RdRp activity and P-N₀ interactions. (A) The sequence of the first 40 N-terminal residues of P is indicated at the top. Residues of the predicted mir motif are boxed. The location of the predicted α-helix is indicated by a blue rectangle below the sequence. The left-hand column indicates the point mutations. Right-hand columns summarize the impact of mutations on (i) the polymerase activity, (ii) in vitro co-purification of GST-P[1-40] mutants with Nmono, and (iii) affinity of Nmono for GST-P[1-40] mutants. Residues identified as critical for both polymerase and interaction with Nmono based on pulldown and SPR data are in red in the sequence. (B) Helical wheel representation (HeliQuest online program) of the putative α-helix located between residues 11-28 of P. Residues critical for N₀-binding are indicated by a star, and the putative site of interaction with the Nmono is indicated by a black half circle. Positively charged residues are in blue, negatively charged residues in red, hydrophobic residues in yellow.
N : 0.477 ± 0.0162
K_D : 2.5 ± 0.6 µM
N : 0.953 ± 0.006
K_D : 0.77 ± 0.07 µM

N-RNA / P P / N
Molar Ratio
Molar Ratio

Figure 2
Figure 3

A. Interaction with Nmono

<table>
<thead>
<tr>
<th></th>
<th>60</th>
<th>126</th>
<th>161</th>
<th>229</th>
<th>241</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[1-161]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[1-126]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[60-126]</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[127-241]</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[127-229]</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[161-241]</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[1-230]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P[231-241]</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Purified proteins

C. GST pulldown

D. + N-RNA

E. Nmono

F. GST-P[161-241]

Figure 3
Figure 4
Figure 5

The figure shows a gel electrophoresis analysis of GST-P [1-40] WT and mutant proteins. The mutant proteins are labeled with amino acid changes in the following positions:

- **E11A**
- **D12A**
- **N14A**
- **N15A**
- **R16A**
- **T18A**
- **K19A**
- **F20A**
- **L21A**
- **E22A**
- **S23A**
- **I24A**
- **K25A**
- **F28A**

Each lane contains a sample of the wild type (WT) and the respective mutant. The gel is stained to visualize the protein bands, with molecular weight markers (kDa) on the left side of the gel.
Figure 7
P mutations

Reduced polymerase activity (≥ 50%) In vitro copurification of Nmono by GST-P\[1-40\] \(K_d\) (µM) calculated by SPR

<table>
<thead>
<tr>
<th>P mutations</th>
<th>Reduced polymerase activity (≥ 50%)</th>
<th>In vitro copurification of Nmono by GST-P[1-40]</th>
<th>(K_d) (µM) calculated by SPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2A</td>
<td>-</td>
<td>+</td>
<td>1.09 ± 0.33</td>
</tr>
<tr>
<td>K3A</td>
<td>-</td>
<td>+</td>
<td>3.09 ± 0.74</td>
</tr>
<tr>
<td>F4A</td>
<td>+</td>
<td>-</td>
<td>13.8 ± 1.3</td>
</tr>
<tr>
<td>F7A</td>
<td>+</td>
<td>+/-</td>
<td>4.09 ± 0.35</td>
</tr>
<tr>
<td>R7A</td>
<td>-</td>
<td>+</td>
<td>11.05 ± 0.9</td>
</tr>
<tr>
<td>P8A</td>
<td>-</td>
<td>+</td>
<td>41 ± 3.6</td>
</tr>
<tr>
<td>R9A</td>
<td>-</td>
<td>+</td>
<td>4 ± 0.54</td>
</tr>
<tr>
<td>G10A</td>
<td>-</td>
<td>+</td>
<td>5.1 ± 1.7</td>
</tr>
<tr>
<td>E11A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>D12A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>K14A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>N15A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>K16A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>V18A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>E21A</td>
<td>-</td>
<td>+</td>
<td>nd</td>
</tr>
<tr>
<td>F22A</td>
<td>-</td>
<td>+</td>
<td>> 100</td>
</tr>
<tr>
<td>L23A</td>
<td>-</td>
<td>+</td>
<td>17.6 ± 1.3</td>
</tr>
<tr>
<td>E24A</td>
<td>-</td>
<td>+</td>
<td>7.49 ± 1.24</td>
</tr>
<tr>
<td>K25A</td>
<td>-</td>
<td>+</td>
<td>4.5 ± 0.62</td>
</tr>
<tr>
<td>L26A</td>
<td>-</td>
<td>+</td>
<td>16.4 ± 1.3</td>
</tr>
<tr>
<td>K27A</td>
<td>-</td>
<td>+</td>
<td>7.77 ± 1</td>
</tr>
<tr>
<td>F28A</td>
<td>-</td>
<td>+</td>
<td>2.57 ± 0.74</td>
</tr>
</tbody>
</table>