Vif proteins from diverse primate lentiviral lineages use a same binding site in APOBEC3G

Michael Letko, Guido Silvestri, Beatrice H. Hahn, Frederick Bibollet-Ruche, Omer Gokcumen, Viviana Simon, Marcel Ooms

1 The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
2 Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
3 Emory University School of Medicine, Atlanta, GA
4 Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
5 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
6 Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA

Words: 4455
Tables: 1
Figures: 9

* Corresponding authors:

Dr. Viviana Simon
Icahn School of Medicine at Mount Sinai
One Gustave Levy Place, Box 1124
New York, NY 10029-6574
Tel: (212) 241-8388
E-mail: viviana.simon@mssm.edu

Dr. Marcel Ooms
Icahn School of Medicine at Mount Sinai
One Gustave Levy Place, Box 1124
New York, NY 10029-6574
Tel: (212) 241-0652
E-mail: marcel.ooms@mssm.edu
ABSTRACT:

APOBEC3G (A3G) is a cytidine deaminase that restricts HIV-1 and other lentiviruses. Most of these viruses encode a Vif protein that directly binds A3G and leads to its proteasomal degradation. Both Vif proteins of Human Immunodeficiency Virus type 1 (HIV-1) and African green monkey Simian Immunodeficiency Virus (SIVagm) bind residue 128 of A3G. However, this position does not control the A3G degradation by Vif variants derived from HIV-2 and SIVmac, which both originated from SIV of sooty mangabey monkeys (SIVsmm), suggesting that the A3G binding site for Vif proteins of the SIVsmm/HIV-2 lineage differs from that of HIV-1. To map the SIVsmm Vif binding site of A3G, we performed immuno-precipitations of individual A3G domains, Vif/A3G degradation assays and a detailed mutational analysis of human A3G. We show that A3G residue 129, but not the adjacent position 128, confers susceptibility to degradation by SIVsmm Vif. An artificial A3G mutant P129D was resistant to degradation by diverse Vifs from HIV-1, HIV-2, SIVagm and chimpanzee SIV (SIVcpz), suggesting a conserved lentiviral Vif binding site. Gorilla A3G naturally encodes a glutamine (Q) at position 129, which makes its A3G resistant to Vifs from diverse lineages. We speculate that gorilla A3G serves as a barrier against SIVcpz strains. In summary, we show that Vif proteins from distinct lineages bind to the same A3G loop, which includes positions 128 and 129. The multiple adaptations within this loop among diverse primates underscore the importance of counteracting A3G in lentiviral evolution.
INTRODUCTION:

Many Old World primate species in African primates are naturally infected with their own version of simian immunodeficiency virus (SIV) (3). The pandemic HIV-1 group M is believed to have originated from one single successful cross-species transmission event from SIV infected chimpanzees to humans (45). Three additional transmission events of SIV from chimpanzees and gorillas resulted in non-pandemic HIV-1 groups N, O and P [Figure 1A; (39, 47, 56)]. In addition, SIV from naturally infected sooty mangabey monkeys (smm) was transmitted to humans on, at least, nine occasions resulting in HIV-2 groups A-I [Figure 1A; (4, 7, 13)]. SIVsmm has also been transmitted to Asian macaques in captivity, resulting in SIVmac (3).

APOBEC3G (A3G) potently restricts HIV-1 and other lentiviruses by deaminating the viral DNA during reverse transcription, which subsequently becomes degraded or severely mutated (18, 29, 60). However, most lentiviruses encode the accessory protein Vif that mediates the proteasomal degradation of A3G (32, 46, 51). As a result of genetic conflicts between Vif and A3G, positive selection on both proteins has led to host specific A3G/Vif adaptations (9, 11, 43, 61). For example, Vifs from HIV-1 and SIV of African Green monkeys (agm) can efficiently degrade their cognate A3G, but are unable to counteract A3G from the other species (Figure 1B) (5, 30, 31, 44, 57). The determinant of this host specificity is a particular residue at position 128 (aspartic acid [D] in huA3G and lysine [K] in agmA3G) of the A3G protein. Mutating human A3G 128D to A3Gagm 128K and vice versa, fully reversed this specificity (Figure 1B) (5, 30, 44, 57). The resistance of human A3G to SIVagm Vif could serve as an effective barrier and may explain why SIVagm has not colonized humans. Several studies have shown that A3G residue 128 directly affects the binding of HIV-1 and SIVagm Vif to their respective A3G proteins, suggesting that this residue is part of the Vif binding site (5, 6, 20, 30, 44). However, adjacent amino acids, such as positions 129 and 130, appear to also be required for HIV-
Vif/A3G binding (19, 20, 26), and A3G position 130 is also involved in African green monkey sub-species specific adaptions to Vif degradation (9). Thus, current data suggest that A3G residues 128 to 130 are part of an exposed loop between the beta strand 4 and the alpha helix 3, but to date no molecular Vif structure or information about the A3G-Vif protein interface are available (44).

In contrast to the well established requirement of A3G position 128 for HIV-1 Vif binding (5, 44, 57), HIV-2 and SIVmac Vif are capable of recognizing A3G independently of the residue at position 128 (31, 57). Little is known on how the SIVsmm Vif protein counteracts human A3G. We thus considered the possibility that the Vif proteins of SIVsmm, HIV-2 and SIVmac strains use an A3G binding site that does not include position 128.

In this study, we show that residues at position 129 in A3G (adjacent to position 128) control Vif binding and mediate resistance to degradation by diverse Vifs from SIVsmm, HIV-2, HIV-1 and SIVagm lineages. A3G 129P is conserved among humans and most primates except gorillas. The gorilla A3G encodes 129Q, which yielded an A3G protein that was resistant to HIV-1 and SIV Vif mediated degradation. Thus, our data indicate that Vif proteins from diverse HIV/SIV lineages all use a same binding site in A3G to mediate its degradation.
MATERIALS AND METHODS:

Plasmids

Replication-competent molecular clones NL4-3 and NL4-3 ΔVif were provided by the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, National Institutes of Health NIH Reagent Program (1, 14). The SIVsmm PG molecular clone was a generous gift from Dr. Frank Kirchhoff, University of Ulm, Ulm, Germany. SIVsmm ΔVif was produced by digesting the full-length molecular clone with XcmI, gel purifying the digested plasmid and re-ligating the gel-purified product to introduce a large deletion in the Vif sequence.

Plasmids with Vif sequences [Table 1; (1, 10, 22, 23, 34, 38, 50, 52, 53)] were used as templates for PCR amplification with Vif primers, containing NotI and EcoRI restriction sites, specific for the 5’ and 3’ regions of each variant, respectively. A carboxy-terminal FLAG-tag was added to all cloned Vif sequences by overlapping PCR. Amplicons were digested with NotI/EcoRI, and the coding regions of the subcloned Vifs were inserted in pCRV1 as previously described (48, 59) Site-directed mutagenesis of Vif was performed using overlapping PCR as described previously (48). The mutated constructs were cloned into pCRV1 vector and confirmed by sequencing. Primer sequences are available upon request. NCBI reference sequence numbers for the Vifs used are U26942.1 (NL4-3 Vif), AF077017.1 (SIVsmm), U04005.1 (SIVagmSAB), U58991.1 (SIVagmTAN), EF394356.1 (SIVcpzTAN1), EF394357.1 (SIVcpzTAN2), DQ373065.1 (SIVcpzEK505), DQ373064.1 (SIVcpzLB715), EF535994.1 (SIVcpzMB897), M76764.1 (SIVmac239).

Lowland gorilla untransformed fibroblasts were obtained from the Coriell Institute (Catalog ID: PR00950) and A3G was amplified from cDNA (Invitrogen, SuperScript III First-Strand Synthesis kit) using the primers: forward 5’-TACAAGCTTAGACGYCTCAGTTCAGAAACACA and 5’-reverse...
AACATCGTATGGGTAGTTTCCCTGATTCTGGAGAATGG. All A3G genes were C-terminally 3xHA tagged and cloned as described previously (16). The African Green Monkey A3G expression plasmid was obtained from the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, National Institutes of Health NIH Reagent Program and was used as a template for PCR amplification (22, 50). Sooty mangabey A3G was amplified from cDNA derived from peripheral blood mononuclear cells (PBMC) of two sooty mangabey monkeys (provided by Dr. Guido Silvestri) using primers, 5’- GCCCTGGGAGGTCACTTTAAGGA and 5’-TGGCTCAACCCAGGTCTCTGCCT for the first round of amplification and primers 5’-CTTTAAGGGGCTGTCCCTAAAA and 5’-CTTCCTAGAGACTGAGGCCCAT for the final round of amplification. PCR products were cloned using StrataClone Blunt kit (Stratagene). Sooty mangabey A3G haplotypes were amplified from StrataClone plasmids with PfuUltra II polymerase (Stratagene). A carboxyl-terminal triple hemagglutinin (HA) tag was added to all cloned A3G sequences by overlapping PCR, followed by cloning into the PTR600 expression plasmid (16). All DNA preparations were sequenced to confirm the integrity of the APOBEC3 sequences. NCBI reference sequence numbers for the A3G used are JN662548.1 (African green monkey), NP_068594.1 (human), AH013828.1 (gorilla).

Four A3G sequences obtained from representative RNA transcripts of the two sooty mangabey monkeys have been submitted to Genbank (Accession numbers will be released upon publication).

Culture of Cell Lines

HEK 293T and TZM-bl reporter cells were maintained in Dulbecco’s modified Eagle medium (Corning Cellgro) supplemented with 10% fetal bovine serum (FBS) and 100 U/ml Penicillin-Streptomycin. TZM-bl cells were provided by the AIDS Research and Reference...
Vif-mediated A3G Degradation

HEK 293T cells were co-transfected with FLAG-tagged A3G expression vectors (100 ng) and increasing amounts of Vif pCRV1 expression plasmid (0, 2.5, 5, 10, 25 and 50 ng) and pCRV1 empty plasmid (total amount of pCRV1 50 ng). The transfections were performed in a 24-well format using 3 mg/ml polyethylenimine (PEI; Polysciences, Inc.). Transfected cells were lysed two days post-transfection and analyzed by western blot.

Western blot analysis

Transfected 293T cells were lysed (1% sodium dodecyl sulfate (SDS), 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 5 mM EDTA). Proteins were separated on 10% SDS-polyacrylamide gel (Invitrogen), transferred to polyvinylidene difluoride (PVDF) membrane (Pierce), and probed with anti-HA polyclonal antiserum from rabbit (Sigma), anti-FLAG monoclonal from rabbit (Sigma), and anti-tubulin monoclonal from mouse (Sigma). Membranes were subsequently incubated with horseradish peroxidase-conjugated secondary antibodies (Sigma), developed with SuperSignal West Femto (Pierce), and detected by using the Protein Simple FluorChem E imaging system.

Renilla-luciferase-based A3G degradation assay

Human A3G was C-terminally tagged with Renilla-luciferase using standard overlapping PCR. HEK 293T cells in 24-well plates were transfected with 5ng of the A3G-Renilla constructs and 60ng of Vif expression plasmid. Twenty-four hours later cells were lysed in 150uL 1x Renilla-specific lysis buffer (Promega) for 10 minutes at room temperature. Lysates (20 uL) were transferred to black 96-well plates (Greiner), 75uL diluted substrate
(Promega) was added to each well and luciferase activity was assayed on a Victor-3 1420 Multilabel Counter (Perkin Elmer). Average values and standard deviations were calculated from data from three independent transfections.

Assessment of Viral Infectivity using Single Cycle Infectivity Assays

HA-tagged A3G expression vectors (50ng) and FLAG-tagged Vif vectors (10ng) were co-transfected with the different HIV molecular clones, NL4-3 WT, NL4-3 ΔVif (500ng) in 293T cells. The transfections were performed in a 24-well format using 3 mg/ml polyethylenimine (PEI; Polysciences, Inc.) and culture medium was replenished after 24 hours. The supernatants were harvested 48 hours after transfection and used to infect 10^4 TZM-bl cells/well in black 96-well plates. TZM-bl cells were infected in triplicate with 20 ul of cell-free viral supernatants. β-galactosidase activity was measured at 48 h post-infection using a Galacto-Star System (Applied Biosystems), as described previously (48). The data from three independent transfections were used to calculate average values and standard deviations.

Co-immuno-precipitation

HEK 293T cells were co-transfected with FLAG-Vif expression plasmids (100ng), HA-A3G expression plasmid (900ng) and NL4-3ΔVif molecular clone (1000ng) in a 6-well format (2ug DNA total). Different amounts of Vif and A3G were tested in order to determine the optimal Vif:A3G transfection ratio (1:1, 1:4 and 1:9). Cells were lysed two days post-transfection in a mild lysis buffer (0.5% triton X-100 in 1x PBS supplemented with EDTA-free protease inhibitor cocktail, Roche) and the cell lysates were cleared at 14,000xg for 10 minutes at 4°C. Cleared lysates were incubated with EZ-View anti-HA beads (Sigma) at 4°C for two hours. Beads were washed 4 times in mild lysis buffer, followed by 4 additional washes in stringent lysis buffer (1% Triton X, 0.1% SDS, 500mM NaCl in PBS...
supplemented with EDTA-free protease inhibitor cocktail, Roche). Proteins were eluted from the beads by boiling in LDS loading buffer (Sigma). Proteins were analyzed by western blot for Vif (FLAG), A3G (HA) and tubulin.
RESULTS:

SIVsmm Vif efficiently degrades human A3G

Although the importance of A3G position 128 is well established for HIV-1 and SIVagm Vif binding and A3G degradation (5, 30, 44, 57), little is known about the SIVsmm and HIV-2 Vif binding site. We first performed an A3G degradation assay with a panel of diverse SIV, HIV-1 and HIV-2 Vifs. Most of the Vif variants tested, including SIVsmm, could efficiently degrade human A3G when compared to the no Vif control or the inactive Vif mutant C133S, which cannot bind Cullin5 [(25, 28, 58) , Figure 1C]. In agreement with previous studies (5, 12, 30, 31, 44, 57), SIVagm Vif failed to degrade human A3G. Taken together, our experimental system is suitable to efficiently discriminate between active and inactive Vif proteins and shows that human A3G is efficiently degraded by SIVsmm Vif.

A3Gsmm variants all encode 128K and restrict SIVsmm ΔVif.

Given that human A3G was efficiently degraded by SIVsmm Vif (Figure 1C), we speculated that the residue at position 128 of A3Gsmm and human A3G must be similar. However, at the start of this study, no information on A3Gsmm sequences was available. We therefore cloned and sequenced A3G transcripts from peripheral blood mononuclear cells (PBMC) of two sooty mangabeys. We identified four different A3Gsmm transcript variants, all of which encoded a lysine at position 128, like A3Gagm (Figure 2A). Interestingly, all A3Gsmm variants started at an downstream start codon at position eight compared to the recently published A3Gsmm sequence (8) and the reference A3Gmac sequence (31).

We next performed single cycle infectivity assays with SIVsmm and SIVsmm ΔVif to determine the antiviral potency of the A3Gsmm variants. Figure 2B shows that all four variants potently restrict SIVsmm ΔVif. Moreover, all four A3Gsmm variants were
degraded with similar efficiency by SIVsmm Vif resulting in complete rescue of viral infectivity (Figure 2B).

We next explored the mode of A3Gssm restriction by mutating the N-terminal, C-terminal or both deaminase domains (Figure 2C). Restriction of SIVsmm ΔVif was maintained upon mutating the N-terminal A3G region, but was largely lost when the C-terminal A3G domain or both deaminase domains were inactivated. These findings indicate that the C-terminal deaminase domain of A3Gssm, much like in the human A3G, is essential for efficient lentiviral restriction (15, 21, 35, 37).

SIVsmm Vif mediated A3G degradation is unaffected by A3G residue 128.

Our results show that SIVsmm efficiently degrades human A3G, despite the residue difference at position 128 between A3Gssm and human A3G (Figure 1C). This indicates that SIVsmm, similar to HIV-2 and SIVmac, can degrade A3G independently of the residue at position 128 (31, 57).

To further explore the role of A3G position 128 in SIVsmm Vif mediated degradation, we tested the efficiencies of different lentiviral Vif variants (two different SIVsmm, HIV-2, SIVagm and HIV-1 NL4-3 Vif) to degrade human A3G, A3Gssm, A3Gagm and the corresponding variants in which position 128 was mutated to either a D or K. Figure 3 shows that SIVsmm and HIV-2 Vifs both efficiently degraded A3G proteins from human, agm and smm regardless of their 128 residue. Of note, SIVagm Vif only degraded A3G variants that encode 128K, whereas HIV-1 Vif specifically degraded A3G 128D variants. These data indicate that SIVsmm and HIV-2 Vif are able to counteract different A3G proteins irrespective of the identity of the residue at position 128.
SIVsmm Vif mediated A3G degradation requires a region between A3G amino acid positions 122 and 148.

We next investigated whether SIVsmm and HIV-2 Vifs are more tolerant to variation at position 128 or whether they use another region within A3G for binding. Precedents for other APOBEC3 binding sites being used by Vif exist: HIV-1 Vif binds the N-terminal domain of human A3G around position 128 (5, 30, 44, 57), but associates with the C-terminal domains of human A3D and human A3F to induce their proteasomal degradation (2, 41, 42, 49).

To determine which A3G domain is utilized for SIVsmm binding, we performed co-immunoprecipitations with SIVsmm Vif and the full-length human A3G, or its N- and C-terminal domains, respectively. We found that SIVsmm Vif specifically co-immunoprecipitates with full-length and the N-terminal A3G domain, suggesting that SIVsmm Vif binds to the N-terminal domain of human A3G (Figure 4A).

In order to map the region of interaction more precisely, we established a rapid, quantitative and sensitive degradation assay based on degradation of human A3G fused to renilla-luciferase on the C-terminus. The A3G-luciferase fusion protein was stably expressed when transfected in the absence of Vif or co-transfected with the SIVsmm VifC133S mutant, which cannot bind Cullin5 [Figure 4, high relative light units (RLU) indicate high level of expression; (25, 28, 58)]. However, in the presence of SIVsmm Vif, A3G was degraded and luciferase expression was reduced (Figure 4B). Since SIVsmm Vif fails to bind the C-terminal A3G domain (Figure 4A), we constructed chimeras between the N-terminal and C-terminal domains, which were then tested for renilla-luciferase expression in the presence of SIVsmm Vif. The renilla-luciferase expression of most of these chimeras was not affected by SIVsmm Vif, indicating that they were resistant to Vif mediated degradation (Figure 4B). However, inclusion of N-terminal A3G residues 122 to
148 conferred sensitivity to SIVsmm Vif-mediated degradation, suggesting that this region contains a binding site of SIVsmm Vif (Figure 4B).

Position 129 in human A3G affects SIVsmm Vif-mediated degradation.

Our data imply that residues between positions 122 and 148 of human A3G are necessary and required for SIVsmm Vif degradation. This region includes the A3G loop containing position 128 important for HIV-1 and SIVagm Vif binding and degradation (5, 6, 17, 19, 26, 30, 44, 57, 62). We thus performed a comprehensive mutational analysis of this A3G loop by alanine-scanning mutagenesis of the residues between positions 126 to 130. We subsequently tested five mutants in the renilla-luciferase degradation assay (Figure 5A). Co-transfection of the A3G-luciferase constructs with HIV-1 Vif showed that A3G encoding 129A was as resistant to HIV-1 degradation as A3G encoding 128K (control, Figure 5B); an observation which is consistent with results from previous studies (5, 30, 44, 57). A3G mutants 127A and 129A displayed some resistance to SIVsmm-mediated degradation, albeit to a lesser degree compared to HIV-1 Vif (Figure 5C). Interestingly, position 129 in human A3G has been described previously to confer resistance to HIV-1 Vif mediated degradation (20, 26).

We chose to focus next on position 129 for in-depth analysis since A3G position 127 is part of the RNA binding domain, which also mediates packaging into virions (19, 20). We tested nine different residues with varying biochemical properties (e.g., hydrophobic, polar, acidic or basic) at this position within the human A3G luciferase fusion construct. Several residues resulted in resistance against SIVsmm Vif mediated degradation with the A3G mutant encoding an acidic aspartic acid (D) at position 129 displaying the highest level of resistance (Figure 5D). In summary, our data identify A3G position 129 as an important determinant for degradation by SIVsmm Vif.
Human A3G 129D is resistant to HIV-1, HIV-2 and SIV Vif mediated degradation.

We next compared the effect of the aspartic acid at A3G position 129 within full-length human A3G using degradation and infectivity assays. Increasing amounts of SIVsmm Vif (0, 10, 25, 50 or 100ng) were co-transfected with A3G WT (100ng) and Vif-mediated degradation was assessed by western blot two days post-transfection. SIVsmm Vif efficiently degraded human A3G, whereas A3G 129D was resistant to SIVsmm Vif degradation even at high Vif levels, which indicates that 129D confers resistance to degradation (Figure 6A).

Infectivity assays were performed using full-length infectious SIVsmm and SIVsmm \(\Delta\)Vif molecular clones transfected in the presence of increasing amounts of human A3G wild-type (WT, 129P) and A3G 129D. Assessment of viral infectivity showed that human A3G WT and A3G 129 both restrict SIVsmm \(\Delta\)Vif efficiently (Fig 6B left) indicating that 129D does not affect A3G activity in the absence of Vif. However, only the activity of A3G WT was counteracted by WT SIVsmm, while A3G 129D was fully resistant (Figure 6B, right panel).

In order to determine the sensitivity of human A3G 129D to other Vif proteins, we performed infectivity assays with HIV-1 \(\Delta\)Vif complemented with a comprehensive panel of lentiviral Vifs in the presence of human A3G WT, A3G129D and A3G128K. Five different Vifs (except SIVagm Vifs) efficiently counteracted and degraded A3G WT (Figure 6C). However, human A3G 129D was found to be resistant to all Vifs except SIVmac Vif. Lastly, as previously shown, A3G 128K was only resistant to SIVcpz and HIV-1 Vifs (5, 30, 31, 44, 57). Thus, an aspartic acid at position 129 in human A3G confers resistance to Vif variants from most lineages, suggesting that these diverse viral proteins all recognize the same interface within A3G.
The gorilla A3G is naturally resistant to diverse lentiviral Vifs because it encodes a glutamine at position 129.

The importance of residue 129 in resistance to Vif-mediated degradation prompted us to look at the conservation of position 129 in A3G across different non-human primates. We found that position 129 was highly conserved among most primates (P) with the exception of gorilla A3G, which encodes a glutamine (Q) at position 129 [Figure 7A; (8, 43, 61)].

Gorillas are naturally infected with SIVgor, which was transmitted originally from SIVcpz infected chimpanzees living in the same habitat [Figure 7A; (52)]. In addition, SIVgor has been transmitted to humans at least once, resulting in HIV-1 group P (39, 54). SIVgor has also been proposed to be the source of HIV-1 group O in humans (52, 55).

In order to analyze the effect of residue 129Q on the antiviral activity of gorilla A3G, we cloned gorilla A3G and generate its Q129P mutant. We compared the sensitivity of the gorilla A3G to various lentiviral Vifs to the sensitivity of human A3G WT and its corresponding P129Q mutant. SIVgor Vif counteracted human A3G with similar efficiency as most other Vifs (Figure 7B, left panel). However, most Vifs tested failed to counteract gorilla A3G with the exception of SIVgor Vif itself (Figure 7B, right panel). To exclude that other residue differences between human and gorilla A3G affected the resistance to Vif, we exchanged both 129 residues and tested their sensitivity to various Vif proteins. The gorilla Q129P mutant behaved like human A3G in so far as both were counteracted by all Vifs except SLVagm Vif (Figure 7C, left panel). Conversely, introducing 129Q into human A3G mimicked the resistance pattern observed for gorilla A3G (Figure 7C, right panel). A comparison of the same Vifs co-transfected with A3G 129D showed a resistance pattern similar to that observed with A3G 129Q (Figure 7D). Taken together, these results indicate that residue 129Q in gorilla A3G confers resistance to diverse panel of Vif proteins.
A3G 129Q confers resistance to divers SIVcpz Vifs.

SIVgor originated from SIVcpz (52), but the SIVcpz Vif tested did not efficiently counteract gorilla A3G (Figure 7B). We, therefore, tested five additional SIVcpz Vifs derived from members of both the *Pan troglodytes troglodytes* (Ptt) and *Pan troglodytes schweinfurthii* (Pts) subspecies of chimpanzees for their efficiency to counteract gorilla A3G. All SIVcpz Vifs counteracted the gorilla A3G only poorly (Figure 8A), but efficiently degraded the “humanized” A3G version Q129P (Figure 8B). Of note, SIVgor Vif efficiently antagonized both gorilla A3G and its corresponding 129P mutant (compare Figures 8A and 8B). In conclusion, all the SIVcpz Vifs tested failed to efficiently counteract gorilla A3G because of a protective glutamine residue at position 129.

A3G 129D and 129Q reduce Vif binding.

We next examined whether sensitivity to degradation would correlate with association between Vif and APOBEC3. Towards this end, we titrated the DNA Vif:A3G ratios in immuno-precipitation experiments (1:1, 1:4 and 1:9). The 1:1 and 1:4 ratio showed no differences in HIV-1 Vif binding to human A3G WT and A3G 128K, but the lowest Vif:A3G ratio (1:9) showed a clear difference in binding (Figure 9A). The later result is in good agreement with other studies (5, 20, 25, 30, 33, 44).

We performed immuno-precipitations using the optimal 1:9 Vif:A3G ratio, with HIV-1, SIVsmm and HIV-2 Vifs co-transfected with human A3G WT, human A3G 128K, human A3G 129D and human A3G 129Q. HIV-1 Vif association was decreased for A3G 128K, 129D and 129Q mutants compared to A3G WT, despite the lower expression levels of A3G (which was due to Vif mediated A3G degradation, Figure 9B). SIVsmm and HIV-2 Vif association was only reduced for A3G 129D and 129Q, which corresponded well with their resistance to Vif mediated degradation. Thus, the immuno-precipitation results show that...
human A3G 129D and huA3G 129Q escape Vif-mediated degradation because of reduced association with Vif.
DISCUSSION:

HIV-1 and HIV-2 originated from SIV of chimpanzees and sooty mangabey monkeys, respectively (45). Successful transmission of these simian viruses required adaptation to human restriction factors (9, 43, 45). The HIV-1 Vif binding site of A3G includes position 128 (5, 30, 44, 57), which confers a barrier between humans and African green monkeys. However, degradation by HIV-2 and SIVmac Vif proteins from the distinct SIVsmm lineage was unaffected by this position, raising the possibility that another binding site might be used (44, 57). Our data now show that this is not the case. We find that residue 129 in human A3G confers resistance to Vif mediated degradation and leads to reduced association to a panel of diverse Vif proteins, including SIVsmm, HIV-2 Vifs, HIV-1, SIVcpz and SIVagm Vifs. Our results suggest that HIV and SIV Vifs adapted differently to the various primate A3G variants resulting in HIV-1 and SIVagm Vifs requiring certain residues at positions 128 and 129, whereas HIV-2 and SIVsmm Vifs interact only with position 129. SIVgor Vif binding, however, depends only on the residue at A3G position 128 (Figure 9C). However, all of these diverse Vif proteins bind the same exposed loop in A3G.

Although most reports showed that A3G position 128 affected Vif binding directly (5, 30, 44), some reports speculated that Vif-mediated A3G degradation was affected post-Vif binding (41, 57). Our data indicate that Vif:A3G DNA ratios used in the immunoprecipitation experiments greatly affect the results (Figure 9A). Moreover, Vif binding differences between A3G WT and A3G 128K mutants could only be observed at low Vif:A3G ratios (Figure 9A). These DNA ratios also better reflect the actual DNA concentrations used in the degradation and infectivity assays. Indeed, a study showing that A3G position 128 did not affect Vif binding used more Vif than A3G expression plasmids (57), which, according to our results, may lead to underestimating differences in Vif binding efficiencies. Of note, numerous other differences between the
aforementioned immuno-precipitations exist, such as salt and detergent concentrations, which could also affect the discrepant result between studies.

In contrast to chimpanzees, who frequently hunt monkeys, gorillas are strict herbivores, suggesting that their risk of exposure to SIV from infected primates is limited (36, 52, 53). Our findings suggest that gorilla A3G resists degradation by most Vifs, effectively serving as a barrier to SIV transmission. Despite low risk of exposure and Vif resistant A3G, gorillas acquired SIVcpzPtt once (52), implying that SIVcpz Vif must have bypassed gorilla A3G. Most of the SIVcpz Vif alleles tested in this study failed to efficiently counteract gorilla A3G (Figure 8). However, two of the SIVcpz Vifs (SIVcpzPtt1 and Ptt2) exhibited some infectivity in the presence of gorilla A3G (Figure 8A) suggesting that the restriction is not absolute. It is possible that some SIVcpz strains exist that can naturally counteract gorilla A3G. Indeed, SIVcpzPts, which encode Vifs with minimal activity against gorilla A3G (Figure 8A), never transmitted to gorillas, although their natural habitats overlap. Furthermore, we lack information to comprehensively assess natural gorilla A3G variation (A3G sequences from only two gorillas exist). Based on the extensive A3G diversity observed in rhesus and sooty mangabey monkeys, it is conceivable that A3G position 129 is polymorphic in certain gorillas making them more susceptible to transmissions of SIV from chimpanzees.

As a result of adaptations to overcoming gorilla A3G 129Q, SIVgor Vif appears to have lost its specificity regarding position 129. In contrast, SIVmac Vif is the only Vif that efficiently degrades all A3G variants independently of specific residues at 128 and 129 (Figure 6C). Possibly, SIVmac Vif binds a distinct A3G region outside the A3G loop containing positions 128 and 129. A recent study showed that Vif from SIV in mantled colobus monkeys (SIVcol; *Colobus guereza*) shifted its A3G binding site away from A3G positions 128 and 129 as a result of an A3G insertion near position 60 (8). Interestingly,
rhesus macaque A3G also contains an insertion at a similar A3G position (Figure 2A), which could also have resulted in a shifted binding site in A3G.

Overall, our analysis demonstrates that Vif from HIV-1, HIV-2 and from several SIV strains bind a common, conserved region within A3G. The requirement of diverse Vifs to bind the same A3G region could potentially make A3G a better drug target than Vif itself, which is more variable and will quickly adapt leading to drug resistance. Structural information on the A3G-Vif interface will help define specific residues involved in this interaction leading to the identification of important A3G structural elements likely encompassing position 129 in A3G.
ACKNOWLEDGEMENTS:

We would like to thank Dr. F. Kirchhoff for providing the SIVsmm PGm full-length molecular clone. We also kindly thank Dr. V. Pathak for productive discussions.

This work was funded in part by NIH grants R01 AI089246 (VS), R01 AI064001 (VS), R37 AI50529 (BHH), R01 AI58715 (BHH), R37 AI66998 (GS) and a Public Health Service Institutional Research Training Award T32A107647 (ML).
FIGURE LEGENDS:

Figure 1. SIVsmm can overcome human APOBEC3G.

(A) Many primates are naturally infected with SIV. SIVgor transmitted to humans resulting in HIV-1 groups O and P and SIVcpz resulted in HIV-1 group N and the pandemic group M (subtypes A-J). Transmission of SIVsmm gave rise to nine HIV-2 groups (A to I).

(B) SIVagm and HIV-1 Vif only neutralize their own species’ A3G. Amino acid 128 in A3G controls this species specificity: Humans encode an aspartate (D) at position 128 while A3Gagm variants carry a Lysine (K) at this position.

(C) C-terminally FLAG-tagged Vif expression plasmids (50ng) were transfected with HA-tagged hA3G WT (100ng) in 293T cells. Two days later, cells were lysed and analyzed by western blot for A3G (HA) and Vif (FLAG) expression. Tubulin served as a loading control. Asterisk denotes non-specific band. The Vif mutant C133S is unable to bind Cullin5 and serves as negative control.

Figure 2. Sooty Mangabey A3G encode a lysine at position 128.

(A) A3G transcripts amplified from PBMCs of two different sooty mangabey cDNAs were cloned and sequenced. Four different variants were observed, each encoding a lysine at position 128. [A3Gsmm reference sequence = KC176186.1, (8); A3Gmac sequence NM_001198693.1, (31)]

(B) SIVsmm WT and ΔVif molecular clone were transfected with 100ng of the different smmA3G variants in 293T cells. Two days later, supernatants were used to infect TZM-bl reporter cells and β-galactosidase activity was measured two days post-infection. Error bars represent the standard deviation of triplicate transfections of a representative experiment.
(C) 293T cells were co-transfected with 500ng SIVsmm ΔVif molecular clone and 100ng WT or mutant A3G. Two days later the supernatants were used to infect TZM-bl cells and β-galactosidase activity was measured two days after infection. The same transfected 293T cells were lysed and analyzed by western blot. Tubulin served as a loading control.

Figure 3. SIVsmm and HIV-2 Vif degrade A3G regardless of position 128.

Vif expression plasmids (50ng) were transfected with 100ng WT A3G or position A3G 128 mutants in 293T cells. Two days later, cells were lysed and analyzed by western blot for A3G (HA) or Vif (FLAG). Tubulin served as a loading control.

Figure 4. SIVsmm Vif interacts between positions 122 and 148 in the N-terminal domain of human A3G.

(A) 293T cells were transfected with SIVsmm Vif and HA-tagged human A3G WT and the N-terminal and C-terminal A3G domains. Cells were lysed in a gentle lysis buffer 2 days later and the cleared lysates were incubated with anti-HA beads (Sigma) at 4°C for two hours. Beads were thoroughly washed in lysis buffer and proteins were eluted by boiling in sample loading buffer. Proteins were analyzed by western blot.

(B) C-terminally renilla-luciferase-tagged chimeras were made by replacing portions of the N-terminal cytidine deaminase domain (NCD) with corresponding regions from the CCD. 293T cells were transfected with 5ng of the A3G construct and 60ng of Vif expression plasmid. The next day cells were lysed and analyzed for renilla-luciferase activity as readout for A3G expression.
Figure 5. A3G Position 129 affects SIVsmm Vif mediated degradation.
(A) A3G amino acids 126-130 were individually mutated to alanine and tested in the luciferase degradation assay.
(B) Luciferase-tagged hA3G alanine mutants (10ng) were co-transfected with 20ng NL4-3 Vif or the NL4-3 Vif mutant C133A. A3G expression is plotted as the ratio of RLU between WT and the inactive C133S Vif mutant. A3G D128K serves as a control.
(C) Luciferase-tagged hA3G alanine mutants (10ng) were co-transfected with 60ng SIVsmm Vif in 293T cells and renilla-luciferase activity was measured the next day.
(D) The indicated amino acids were introduced into human A3G at position 129 and tested for renilla-luciferase activity the next day.

Figure 6. Human A3G P129D mutant resists degradation of diverse Vifs.
(A) 293T cells were transfected with 0, 10, 25, 50 or 100ng SIVsmm Vif and 100ng hA3G. Two days later, cells were lysed and analyzed by western blot.
(B) 0, 10, 25, 50 or 100ng HA-tagged hA3G plasmid were transfected with 500ng SIVsmm ΔVif or SIVsmm WT molecular clone in 293Ts and supernatants were used to infect TZM-bl cells two days later and β-galactosidase activity was measured two days post-infection. The same transfected 293T cells used for infection were also lysed and analyzed by western blot.
(C) 10 ng of the indicated Vifs, 50 ng of human WT, 129D and 128K A3G and 500ng NL4-3 Δvif were transfected in 293Ts. Supernatants were used to infect TZM-bl cells two days later and β-galactosidase activity was measured two days post-infection. The same transfected 293T cells used for infection were also lysed and analyzed by western blot.
A glutamine residue at position 129 in the gorilla A3G protects against degradation of non-cognate SIV Vifs.

(A) SIVcpzPtt has been transmitted to both humans and gorillas, giving rise to HIV-1 groups M and N as well as SIVgor. SIVgor has also been transmitted to humans, giving rise to HIV-1 groups O and P. A3G 129P is conserved among humans, chimps, sooty mangabeys, African green monkeys, and rhesus macaque, but gorillas encode A3G 129Q.

(B) Human A3G WT and gorilla A3G were co-transfected with the indicated Vif plasmids and NL4-3Δvif molecular clone in 293T cells. Two days later the supernatants were used to infect TZM-bl cells and β-galactosidase activity was measured two days post-infection. Transfected 293T cells were lysed and analyzed by western blot.

(C) Human A3G 129Q and gorilla A3G 129P were co-transfected with the indicated Vif plasmids and NL4-3Δvif molecular clone in 293T cells. Two days later the supernatants were used to infect TZM-bl cells and β-galactosidase activity was measured two days post-infection. Transfected 293T cells were lysed and analyzed by western blot.

(D) Human A3G 129D was co-transfected with the indicated Vif plasmid and NL4-3Δvif molecular clone in 293Ts. Transfected 293T cells were lysed and analyzed by western blot.

Figure 8. A3G 129Q confers resistance to divers SIVcpz Vifs.

A panel of SIVcpz Vif expression plasmids were co-transfected with gorilla A3G WT (8A) and gorilla A3G 129P (8B) and the NL4-3Δvif molecular clone in 293T cells. Two days later the supernatants were used to infect TZM-bl cells and β-galactosidase activity was measured two days post-infection. Transfected 293T cells were lysed and analyzed by western blot. Pts1=TAN1, Pts2 = TAN2, Ptt1 = EK505, Ptt2 = LB715; Ptt3 = MB897.
Figure 9. SIVsmm Vif binds human A3G position 129.

(A) 500ng Vif and 500ng A3G (1:1), 250ng Vif and 750ng A3G (1:4), and 100ng Vif and 900ng A3G (1:9) were co-transfected in 293T cells. Cells were lysed in a gentle lysis buffer 2 days later and the cleared lysates were incubated with anti-HA beads (Sigma) at 4°C for two hours. Beads were thoroughly washed in lysis buffer and proteins were eluted by boiling in sample loading buffer. Proteins were analyzed by western blot for Vif (FLAG) and hA3G (HA).

(B) 100ng Vif and 900ng A3G plasmids (1:9) were transfected and cell lysates were subjected to co-immuno-precipitation as described above.

(C) The predicted structure for the NTD of hA3G was modeled with SwissModel using APOBEC3C as a reference (24). SIVgor Vif is only sensitive to variation at position 128, whereas HIV-1 and SIVagm Vif are sensitive to changes in both positions 128 and 129; HIV-2 and SIVsmm Vif only interact with position 129.
REFERENCES:

virus (SIVmac) and human immunodeficiency virus type 2: persistent infection of rhesus monkeys with molecularly cloned SIVmac. Journal of virology 62:4691-4696.

57. Xu, H., E. S. Svarovskaia, R. Barr, Y. Zhang, M. a. Khan, K. Strebel, and V. K. Pathak. 2004. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-

Table 1. Summary of the Vif variants used in this study.

<table>
<thead>
<tr>
<th>Vif variant</th>
<th>HIV/SIV origin</th>
<th>Plasmid source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 NL4-3</td>
<td>human</td>
<td>NIH<sup>1</sup> #114</td>
<td>Adachi et al. 1986 (1)</td>
</tr>
<tr>
<td>SIVsmm (PBj)</td>
<td>sooty mangabey monkey</td>
<td>NIH<sup>1</sup> #2998</td>
<td>Dewhurst et al. 1990 (10)</td>
</tr>
<tr>
<td>SIVsmm (PGm)</td>
<td>sooty mangabey monkey</td>
<td>Dr. F. Kirchhoff</td>
<td>Novembre et al. 1998 (38)</td>
</tr>
<tr>
<td>HIV-2 Rod</td>
<td>human</td>
<td>NIH<sup>1</sup> #207</td>
<td>Naidu et al. 1988 (34)</td>
</tr>
<tr>
<td>SIVagm Sab</td>
<td>African green monkey</td>
<td>NIH<sup>1</sup> #2614</td>
<td>Jin et al. 1994 (22)</td>
</tr>
<tr>
<td>SIVagm Tan</td>
<td>African green monkey</td>
<td>NIH<sup>1</sup> #3444</td>
<td>Soares et al. 1997 (50)</td>
</tr>
<tr>
<td>SIVmac 239</td>
<td>rhesus macaque</td>
<td>NIH<sup>1</sup> #210</td>
<td>Kestler et al. 1990 (23)</td>
</tr>
<tr>
<td>SIVgor</td>
<td>gorilla</td>
<td>NIH<sup>1</sup> #11722</td>
<td>Takehisa et al. 2009 (52)</td>
</tr>
<tr>
<td>SIVpts 1 (Tan 1)</td>
<td>chimpanzee (Pan troglodytes schweinfurthii)</td>
<td>Dr. B. H. Hahn</td>
<td>Takehisa et al. 2007 (53)</td>
</tr>
<tr>
<td>SIVpts 2 (Tan 2)</td>
<td>chimpanzee (Pan troglodytes schweinfurthii)</td>
<td>Dr. B. H. Hahn</td>
<td>Takehisa et al. 2007 (53)</td>
</tr>
<tr>
<td>SIVpts 1 (EKS05)</td>
<td>chimpanzee (Pan troglodytes troglodytes)</td>
<td>Dr. B. H. Hahn</td>
<td>Li et al. 2012 (27)</td>
</tr>
<tr>
<td>SIVpts 2 (LB715)</td>
<td>chimpanzee (Pan troglodytes troglodytes)</td>
<td>Dr. B. H. Hahn</td>
<td>Li et al. 2012 (27)</td>
</tr>
<tr>
<td>SIVpts 3 (MB897)</td>
<td>chimpanzee (Pan troglodytes troglodytes)</td>
<td>Dr. B. H. Hahn</td>
<td>Li et al. 2012 (27)</td>
</tr>
</tbody>
</table>

¹obtained from the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, National Institutes of Health NIH Reagent Program