A role for Ifit2 in restricting West Nile virus infection in the brain

Hyelim Cho1, Bimmi Shrestha2, Ganes C. Sen4, and Michael S. Diamond1,2,3#

Departments of Molecular Microbiology1, Medicine2, Pathology and Immunology3, Washington University School of Medicine, St. Louis, Missouri 63110. Department of Molecular Genetics4, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195

# Corresponding author: Michael S. Diamond, M.D., Ph.D.

Departments of Medicine, Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St Louis, Missouri 63110. Tel: 314-362-2842. Fax: 314-362-9230.

Email: diamond@borcim.wustl.edu

Figures: 8; Abstract: 164 words

Running title: Ifit2 restricts West Nile virus infection
Previous studies have demonstrated that type I interferon (IFN) restricts West Nile virus (WNV) replication and pathogenesis in peripheral and central nervous system (CNS) tissues. However, the \textit{in vivo} role of specific antiviral genes that are induced by type I IFN against WNV infection remains less well characterized. Here, using \textit{Ifit2}\textsuperscript{-/-} mice we defined the antiviral function of the interferon-stimulated gene (ISG) \textit{Ifit2} in limiting infection and disease \textit{in vivo} by a virulent North American strain of WNV. Compared to congenic wild-type controls, \textit{Ifit2}\textsuperscript{-/-} mice showed enhanced WNV infection in a tissue-restricted manner, with preferential replication in the CNS of animals lacking \textit{Ifit2}. Virological analysis of cultured macrophages, dendritic cells, fibroblasts, cerebellar granule cell neurons, and cortical neurons revealed cell-type specific antiviral functions of \textit{Ifit2} against WNV. In comparison, small effects of \textit{Ifit2} were observed on the induction or magnitude of innate or adaptive immune responses. Our results suggest that \textit{Ifit2} restricts WNV infection and pathogenesis in different tissues in a cell-type specific manner.
INTRODUCTION

West Nile virus (WNV) is a mosquito-transmitted, neurotropic positive-stranded RNA virus in the *Flaviviridae* family, which includes other pathogens of global health concern such as Dengue, yellow fever, and Japanese encephalitis viruses. WNV is maintained in an enzootic cycle between *Culex* species mosquitoes and several avian hosts, but can cause disease in vertebrate animals including horses and humans (1). Before 1999, the distribution of WNV was localized largely to Africa, central and southern Asia, the Middle East, southern Europe, and Oceania (2). Since its entry into North America in New York City in 1999, WNV has spread across the continental United States into Canada, Mexico, and parts of South America, likely due to bird migration and the presence of competent mosquito hosts (3, 4). While human transmission usually occurs through mosquito inoculation, other routes (blood transfusion, organ transplantation, and intrauterine transmission) have been reported (1). Although the majority (~50 to 70%) of human infections are asymptomatic, WNV infection in the elderly or immunocompromised can cause severe neuroinvasive disease including meningitis, encephalitis, and acute flaccid paralysis (5–7). In the United States alone between 1999 and 2012, ~36,000 cases and ~1,500 deaths have been confirmed (http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm). Despite this, no approved vaccines or therapeutics are available to treat or prevent human WNV infection.

RNA intermediates of viral replication are recognized by cytosolic and endosomal pattern recognition receptors (PRR), such as RIG-I-like receptors (RLR) or Toll-like receptors (TLR), which signal specific transfection factors (e.g., Irf3 or Irf7) to induce type I IFN expression and secretion. Autocrine and paracrine binding of type I IFN to its receptor (Ifnar) results in a signaling cascade that includes Stat1, Stat2, and Irf9 and results in the induction of many ISGs, some of which inhibit virus infections. Although type I IFN
responses control the cell and tissue tropism of several families of RNA and DNA viruses, the specific molecules that mediate this remain poorly characterized. While earlier studies defined *Mx1*, *Pkr*, and *Rnase L* as broad-spectrum antiviral ISGs against several families of RNA viruses, more recent investigations have identified other ISGs (e.g., *Ifit1*, *Ifitm* genes, *Bst2*, *Apobec3g*, and *Adar*) that restrict infection of a more limited range of viruses (8–10). Several individual ISGs have been suggested to have antiviral activity against WNV. *C6orf150*, *Hpse*, *Nampt*, *Phf15*, *Ifitm2*, *Ifitm3*, and *Isg20* inhibit WNV infection *in vitro* (10, 11), and viperin (*Rsad2*, *Pkr*, and *Rnase L*) restrict WNV pathogenesis *in vivo* and *in vitro* in a tissue- and cell-type-specific manner (8, 12).

Ifit2 (also known as ISG54) is a member of the IFN-induced proteins with tetratricopeptide repeats (IFIT) family. IFIT proteins contain multiple tetratricopeptide repeats, which are domains implicated in the regulation of cell cycle, transcription, protein transport, and protein folding processes (13). Initial experiments indicated that Ifit2 could restrict infection of several viruses by binding to and inhibiting subunits of eIF3, a key protein involved in initiation of host translation (14). More recent structural and functional studies suggest that IFIT family members also inhibit infection of cytoplasmic RNA and DNA viruses by directly binding non-self RNA, including moieties displaying 5'-ppp RNA (15, 16) and possibly 5' Cap 0 structures (7mGpppN) lacking 2'-O methylation (17, 18). Ifit2 in particular, has been demonstrated to have antiviral activity in cell culture against WNV (19). While *in vivo* studies have established an antiviral effect of Ifit2 against VSV infection (20), analogous experiments have not been conducted with WNV or any other flavivirus.

Beyond its antiviral function Ifit2 has been implicated in the regulation of host cell immune responses. One study showed that human IFIT1 and IFIT2 bind to and inhibit MITA (also known as STING), which functions as a mitochondrial adaptor protein that
recruits TANK-binding kinase 1 (TBK1) and IRF-3 to a complex with MAVS (also known as IPS-1, CARDIF and VISA), resulting in the downstream induction of IFN-β expression in response to viral RNA or DNA (21). However, these data conflict with the results from mouse fibroblasts, macrophages, and dendritic cells in which silencing of IFIT2 expression did not alter type I IFN responses (22). Finally, expression of human IFIT2 also has been suggested to promote apoptosis via a mitochondrial pathway (23).

Here, we examined in detail the function of Ifit2 in vivo against WNV infection and pathogenesis using Ifit2−/− mice. Our data indicates that Ifit2 restricts WNV infection in a cell- and tissue-specific manner, yet had small effects on induction and magnitude of the innate and adaptive antiviral immune responses. Thus, Ifit2 is a key antiviral effector molecule that functions downstream of host pathogen recognition signaling to inhibit infection by WNV, and possibly other viruses.
MATERIALS AND METHODS

Virus propagation and titration. The WNV strain (3000.0259) was isolated in New York in 2000 and passaged once in C6/36 *Aedes albopictus* cells to generate an insect cell-derived stock virus as described previously (24). Mammalian cell-derived WNV was generated from an infectious cDNA clone of the New York 1999 strain and propagated once in C6/36 *Aedes albopictus* cells and passaged a second time in Vero cells (25). WNV-NS5-E218A was propagated in BHK21-15 cells as described previously (26). BHK21-15 and Vero cells were used for titration of virus in tissue and cells by plaque or focus forming assay as described previously (27, 28). Levels of virus in serum and lymph nodes was determined by quantitative RT-PCR using WNV-specific primers and probe as described (8).

Mouse experiments and tissue preparation. C57BL/6 wild-type mice were obtained commercially (The Jackson Laboratory) and the generation of congenic Ifit2−/− mice was described previously (20). Mice were bred in the animal facility of Washington University School of Medicine, and experiments were performed according to the guidelines and with approval of the Washington University Animal Studies Committee. For infection, eight- to ten-week-old age-matched mice were used. Mice were infected subcutaneously in the footpad (10^2 PFU in 50 μl) or intracranially (10^1 PFU in 10 μl) with virus diluted in Hanks balanced salt solution (HBSS) supplemented with 1% heat-inactivated fetal bovine serum (FBS). On specific days after infection, mice were perfused extensively with PBS and tissues were harvested, weighed, and virus titers were determined by plaque assay on BHK21-15 cells (27). For survival studies, 8 week-old mice were infected by via footpad inoculation and monitored for 21 days.

IFN bioassay. Levels of biologically active type I IFN in serum of mice infected with
WNV were determined using an encephalomyocarditis virus L929 cell cytopathic effect bioassay as described previously (28, 29).

**Cytokine analysis.** Mice were infected subcutaneously with $10^2$ PFU of WNV in the footpad, and serum was collected at 2 days after infection. Cytokine levels in serum were measured using a Bioplex Pro 8-plex Custom Cytokine Kit (BioRad) and Bioplex 200 (BioRad).

**Measurement of WNV-specific antibodies.** The levels of WNV-specific IgM and IgG were measured using an enzyme-linked immunosorbent assay (ELISA) with purified WNV E protein as described (30). The titer of neutralizing antibody in serum was quantitated by a focus reduction neutralization assay in Vero cells as described (31).

**Analysis of splenic CD4+ and CD8+ T cells.** Splenocytes were harvested from wild-type or \textit{Ifit2}^{−/−} mice on day 8 after WNV infection. Intracellular IFN-γ or TNF-α staining of CD8+ T cells was performed after \textit{ex vivo} restimulation with an immunodominant D<sup>d</sup>-restricted NS4B peptide as described (32). Samples were processed, stained with antibodies against IFN-γ and TNF-α (BD Pharmingen), and analyzed using an LSR II flow cytometer (Becton Dickinson) and FlowJo software (Treestar).

**CNS leukocyte isolation and phenotyping.** Brains were harvested from wild-type and \textit{Ifit2}^{−/−} mice on day 8 after WNV infection and CNS leukocytes were isolated after Percoll gradient centrifugation as described previously (33). Cells were stained for CD3, CD4, CD8, CD45, and CD11b with directly conjugated antibodies (BD Pharmingen). Intracellular staining for IFN-γ and TNF-α was performed after NS4B peptide restimulation as described before (32).

**Primary cell isolation and infection.** Primary macrophages, dendritic cells, embryonic fibroblasts, cortical neurons, and cerebellar granule cell neurons were prepared
from embryonic, neonatal, and adult wild type and Ifit2-/- mice as detailed in prior studies. For multi-step growth curves, cells were infected at a low multiplicity of infection (MOI of 0.001) with or without IFN-β pre-treatment (12 hours, 10 IU/ml, PBL Interferon Source) or IFN-ζ pre-treatment (4 hours, 0.4 ng/ml, PBL Interferon Source). Virus was harvested from supernatants at specific times and titrated by focus-forming assay on Vero cells.

**Statistical analysis.** Kaplan-Meier survival curves were analyzed by the log rank test. A two-tailed Student’s t test was used to determine statistically significant differences for *in vitro* experiments. The Mann-Whitney test was used to analyze differences in viral burden. All data were analyzed by using Prism software (GraphPad Software).
Ifit2 is required for control of WNV infection in vivo. To determine whether a deficiency of Ifit2 resulted in increased susceptibility to lethal WNV infection, we infected wild-type and congenic Ifit2−/− mice via a subcutaneous route with 10^3 PFU of WNV and survival was monitored (Fig 1A). A higher percentage of Ifit2−/− mice succumbed to lethal WNV infection compared to wild-type mice (92% versus 38%; P < 0.001). Moreover, we observed a significant decrease in the mean time to death (10.0 versus 12.2 days; P < 0.01) in Ifit2−/− compared to wild-type mice. As IFIT genes are implicated in the recognition and control of flaviviruses, coronaviruses, and poxviruses lacking 2'-O methylation of the 5' viral RNA cap structures (17, 18, 36), we also tested whether an absence of Ifit2 affected pathogenicity of WNV-NS5-E218A. Previous studies established that this WNV mutant virus lacked 2'-O methyltransferase activity and was attenuated in wild-type mice (26) yet more virulent in Ifit1−/− mice (17, 18). Unexpectedly, WNV-NS5-E218A remained attenuated in Ifit2−/− adult mice, as no illness or mortality was observed after subcutaneous or intracranial challenge (data not shown). Thus, while Ifit2 had a protective effect against a virulent strain of WNV in vivo, it was not required for restricting viruses lacking 2'-O methylation.

Ifit2 restricts WNV replication in different tissues. To begin to understand how Ifit2 restricts WNV infection in vivo, we measured viral burden in serum, peripheral organs (spleen, kidney, and draining lymph node) and CNS tissues (brain and spinal cord) at different days after subcutaneous infection.

In the serum and draining lymph nodes, we observed a small (3 to 140-fold) yet statistically significant (P < 0.02) increase in WNV replication in Ifit2−/− mice, but only at day 4 after infection (Fig 1B and C). However, we failed to detect differences in the kinetics
or magnitude of WNV infection in the spleen or kidney (Fig 1D and E), in contrast to mice deficient in type I IFN signaling (34, 37). Overall, compared to mice lacking other innate immune signaling molecules (e.g., Mavs, Irf3, Irf7, or Ifnar) (37–40), a loss of Ifit2 expression had a limited effect on WNV infection in peripheral organs.

We next assessed the effects of an absence of Ifit2 on WNV infection in CNS tissues (Fig 1F and G). At day 4 after subcutaneous infection, we observed higher levels ($P = 0.02$) of infection in the brains of Ifit2$^{-/-}$ mice. At day 8 after infection, there was a trend toward of increased viral burden in the brain and spinal cord of Ifit2$^{-/-}$ mice, although this failed to attain statistical significance.

Given that a deficiency of Ifit2 resulted in a trend towards increased viral burden in the CNS at day 8 after infection, we hypothesized that Ifit2 might restrict infection in some but not all regions, which could obscure small differences. To test this, we infected wild-type and Ifit2$^{-/-}$ mice, and at day 9 harvested tissues from different regions of the CNS and analyzed their viral burden. Notably, viral infection in Ifit2$^{-/-}$ mice was higher in the olfactory bulb ($10^{5.0}$ versus $10^{3.9}$ PFU/g, $P = 0.004$), brain stem ($10^{6.4}$ versus $10^{4.9}$ PFU/g, $P = 0.004$), and cerebellum ($10^{5.3}$ versus $10^{4.6}$ PFU/g, $P = 0.009$) compared to wild-type mice (Fig 2A, C, and D). In comparison, no difference in viral burden was observed in the cerebral cortex or the spinal cord ($P > 0.1$, Fig 2B and E). Overall, this data indicates that Ifit2 has a role in restricting WNV infection in specific regions of the brain.

Cytokine levels in circulation of Ifit2$^{-/-}$ mice. Because Ifit2 has been suggested to inhibit STING, a mitochondrial adaptor protein that recruits TBK1 and IRF-3 to a complex with MAVS to induce IFN-β expression (21), we assessed whether a deficiency of Ifit2 affected type I IFN production. Wild-type and Ifit2$^{-/-}$ mice were infected with WNV, and the level of biologically active type I IFN in serum was monitored in a validated EMCV L929...
cell bioassay (29). Notably, we observed moderately higher levels (2- to 15-fold; $P < 0.05$) of type I IFN activity at every time point tested (Fig 3). This may be due to increased viral replication in cells of $Ifit2^{-/-}$ mice, or to the proposed loss of negative regulatory effects on cytokine production (41). Because of the elevated type I IFN levels and prior reports suggesting that Ifit2 might regulate inflammatory responses (41), we also measured cytokine levels in serum from wild-type and $Ifit2^{-/-}$ mice at day 2 after infection. No differences in IL-1β, IL-6, IL-10, IL-12 (p40 subunit), IFN-γ, TNF-α, CXCL1, and CCL4 cytokines and chemokines were observed (data not shown).

**Effect of Ifit2 on adaptive immune responses to WNV infection.** We next investigated whether an absence of Ifit2 influenced the development of an effective adaptive immune response during infection, as prior studies suggest that depressed T and B cell response can result in enhanced WNV replication in the CNS (27, 42–44). Initially, we evaluated T cell responses in the spleen. Equivalent percentages of CD4+ and CD8+ T cells were isolated from spleens of wild-type and $Ifit2^{-/-}$ mice (Fig 4A and B). Moreover, we observed no difference in the percentage of WNV-specific CD8+ T cells that expressed IFN-γ, TNF-α, or IFN-γ and TNF-α (double-positive) after ex vivo NS4B peptide restimulation in wild-type and $Ifit2^{-/-}$ mice (Fig 4C-E).

Although peripheral T cell priming was equivalent, we assessed whether leukocyte migration into the CNS might be altered in $Ifit2^{-/-}$ mice, as infiltrating leukocytes into the brain clear WNV infection (43–45). In the brain, at day 8 after infection, we observed similar and percentages numbers of CD8+ T cells ($P > 0.6$) (Fig 5A). Antigen specificity was inferred after intracellular staining of IFN-γ or TNF-α in brain CD8+ T cells that were restimulated with NS4B peptide. No statistical differences were observed in the percentage or number of antigen-specific IFN-γ+ CD8+ or TNF-α+ CD8+ T cells in the brain ($P > 0.2$).
We also observed similar numbers of CD11b$^{\text{high}}$ CD45$^{\text{high}}$ macrophages ($P = 0.4$) and CD11b$^{\text{high}}$ CD45$^{\text{low}}$ microglia ($P > 0.7$) (Fig 5D and E).

To assess the effect of Ifit2 on WNV-specific humoral responses, we analyzed serum from Ifit2$^{-/-}$ and wild-type mice for binding to WNV E protein. At days 6 and 8 after infection, no appreciable differences in levels of anti-WNV E protein IgM were observed between Ifit2$^{-/-}$ and wild-type mice ($P > 0.08$) (Fig 6A). Similar levels of WNV-specific IgG also were detected in Ifit2$^{-/-}$ and wild-type mice at days 8 after infection ($P > 0.1$) (Fig 6B). Consistent with this, no defect in the levels of neutralizing antibodies was observed in Ifit2$^{-/-}$ mice ($P > 0.3$) (Fig 6C). Together, these results suggest that the virological phenotype observed in Ifit2$^{-/-}$ mice was not due to major defects in T or B cell function.

**Ifit2 controls WNV replication in subsets of primary cells.** Given the variation in tissue-specific virological phenotypes in Ifit2$^{-/-}$ mice, we speculated that there might be cell-specific functions of Ifit2 in restricting WNV replication. To assess this, we compared multistep growth kinetics in several different wild-type and Ifit2$^{-/-}$ primary cells, including macrophages, myeloid dendritic cells, embryonic fibroblasts (MEFs), cortical neurons, and cerebellar granule cell neurons after WNV infection at a low MOI (0.001 to 0.01). In macrophages, cortical neurons, and MEFs, we observed no difference in WNV infection between wild-type and Ifit2$^{-/-}$ cells (Fig 7A-C). In comparison, small (2 to 3-fold) yet statistically significant ($P < 0.05$) increases in WNV infection were observed at the 48 and 72 hour time points in Ifit2$^{-/-}$ cerebellar granule cells and at the 72 hour time point in Ifit2$^{-/-}$ dendritic cells (Fig 7D and E). The antiviral effect of Ifit2 was magnified when cells were primed with different type I IFN. The level of WNV replication was higher in IFN-β pre-treated Ifit2$^{-/-}$ MEFs (2 to 5-fold, $P < 0.05$) and macrophages (20-fold, $P < 0.01$) (Fig 7F and G). Similar results were observed after treatment with another mouse type I IFN, IFN-ζ.
(also known as limitin) (Fig 7H). Overall, our results establish a cell type-specific effect of Ifit2 on WNV replication, which can be magnified in the context of a type I IFN response.

**Ifit2 has a direct role in restricting WNV replication in the CNS.** Previous studies suggested a direct role of Ifit2 in controlling virus replication in the CNS (20, 46). Because our survival and virological experiments through a peripheral route suggested that Ifit2 contributed to the control of WNV infection in selected CNS tissues, we directly introduced virus into the brain after intracranial injection and monitored spread to the contralateral brain regions (olfactory bulb, cerebral cortex, brain stem, spinal cord, cerebellum) on days 2, 4, and 6 after inoculation (Fig 8A to E). Threshold levels of infection were detected at day 2 after infection in wild-type and Ifit2−/− mice. By day 4, viral titers of Ifit2−/− mice were substantially higher in the olfactory bulb (10^{5.0} versus 10^{3.1} PFU/g; $P = 0.002$), cerebral cortex (10^{6.9} versus 10^{1.5} PFU/g; $P = 0.0001$), brain stem (10^{5.6} versus 10^{2.9} PFU/g; $P < 0.0001$), cerebellum (10^{5.5} versus 10^{2.8} PFU/g; $P = 0.0002$), and spinal cord (10^{5.1} versus 10^{2.6} PFU/g; $P < 0.0001$) compared to wild-type mice. Nonetheless, by day 6, viral titers of wild-type mice became equivalent to that observed in Ifit2−/− mice. These results suggest that the antiviral action of Ifit2 restrict WNV spread in the CNS, especially during the early stages of virus spread.
DISCUSSION

Subsets of ISGs are responsible for the antiviral effector functions of type I IFN.

While several hundred ISGs have been identified by transcriptional profiling and RNAseq studies (47), relatively few have been shown directly to inhibit viral infections (48). IFIT genes encode a family of proteins that are induced after IFN treatment, viral infection, or PAMP recognition (49, 50). Four family members have been characterized in humans (IFIT1 (ISG56), IFIT2 (ISG54), IFIT3 (ISG60) and IFIT5 (ISG58) and three members are expressed in mice: Ifit1 (Isg56), Ifit2 (Isg54), Ifit3 (Isg49). We initiated these pathogenesis studies because preliminary data suggested that Ifit2 had antiviral activity against attenuated WNV strains in cell culture (17, 19). Indeed, our analysis here shows a key role for Ifit2-dependent restriction of WNV infection in vivo. Ifit2−/− mice showed enhanced susceptibility to virulent WNV infection, and this was associated with elevated levels of infection in subsets of CNS tissues. A direct effect of Ifit2 on neuronal cell infection and spread in vivo also was suggested, as deficient mice exhibited higher viral burden in CNS tissues following intracranial inoculation. Finally, a multistep viral growth analysis of primary cells confirmed a cell type-specific antiviral function of Ifit2, as Ifit2−/− myeloid cells, embryonic fibroblasts, and cerebellar granule cell neurons but not cortical neurons showed enhanced infectivity. This phenotype was magnified in the context of priming with type I IFN, which is consistent with the hypothesis that IFN-induced Ifit2 expression in some cell types restricts WNV replication.

A previous study also suggested an antiviral function of Ifit2 in subset of CNS tissues against VSV in vivo (20). In that report, Ifit2 inhibited VSV replication in the cortex, brain stem, midbrain, and cerebellum after intranasal infection. Analogously, in our study, Ifit2 limited WNV infection in multiple regions of the brain after intracranial infection. These
results suggest that Ifit2 contributes to protection against viral pathogenesis in the brain, which is consistent with the observation that Ifit2 is induced in many regions of the brain upon viral infection (51). Nonetheless, in our subcutaneous infection model, some regions of the CNS (cerebral cortex and spinal cord) failed to show enhanced infection in Ifit2\(^{-/-}\) mice, although this could reflect the time point that was assessed in these experiments. Moreover, Ifit2\(^{-/-}\) mice did not show increased viral infection in visceral organs such as the spleen and kidney, which could reflect the restricted expression pattern of Ifit2 in those tissues (46).

The antiviral role of Ifit2 has been described in the context of other virus infections. Our data showing an antiviral role of Ifit2 is consistent with recent data with influenza A virus, although the mechanism of action may differ. Ifit2 was suggested to inhibit influenza A virus by forming a complex with Ifit1 and Ifit3 to recognize the 5'-ppp moiety on genomic viral RNA (22). In comparison, Ifit2 expression failed to show any antiviral effects on alphavirus infection \textit{in vitro} (52).

The identification of Ifit2 as an ISG that restricts WNV infection \textit{in vivo} adds to a small number of studies suggesting that the deletion of individual ISGs can impact WNV pathogenesis. While a redundancy of antiviral ISGs against a given virus might preclude phenotypes when a single antiviral ISG is targeted for deletion, recent studies with WNV suggest otherwise. Using genetically deficient mice, several ISGs including PKR, RNase L, and viperin (Rsad2) were shown to inhibit WNV \textit{in vivo}. Activated PKR phosphorylates the \(\alpha\) subunit of eukaryotic translation initiation factor 2 (eIF2-\(\alpha\)), resulting in a block of protein synthesis (26). RNase L is an endoribonuclease and once activated, it cleaves viral RNA and mRNA, leading to a decrease in protein synthesis and viral replication (23). \textit{Pkr}\(^{-/-}\) x \textit{RnaseL}\(^{-/-}\) mice were vulnerable to subcutaneous WNV infection, with increased mortality and viral replication. Viperin (Rsad2) is an endoplasmic reticulum (ER)-associated protein that has
inhibitory activity against several viruses, possibly because it inhibits bulk protein secretion, lipid raft formation, and virus budding, and localizes to ER-derived lipid droplets, which are required for efficient replication by some RNA viruses (53). Viperin $^{+/+}$ mice infected with WNV also showed increased lethality and/or enhanced viral replication in CNS tissues (12).

How does Ifit2 inhibit WNV infection? Although more detailed mechanism of action studies are required, Ifit2 has been proposed to inhibit viral translation through its binding to and inhibition of subunits of eukaryotic initiation factor 3 (eIF3) (14). eIF3 is a multisubunit complex that functions during translation initiation step, including assembly of eIF2-GTP-Met-tRNA ternary complex, formation of the 43S pre-initiation complex, mRNA recruitment to the 43S pre-initiation complex (54). Mouse Ifit2 and human IFIT2 can block the formation of 48S complex by binding to eIF3c and human IFIT2 can block eIF3 binding to ternary complex by interacting with eIF3e (14). Another IFIT family member, human IFIT1, has been suggested to inhibit influenza and Rift Valley fever virus replication by binding to 5'-ppp moiety and sequestering RNA from replication (22), and this phenotype reportedly required a complex with IFIT2 and IFIT3. While capped WNV genomic RNA lacks a 5'-ppp end, the negative strand intermediate may have this moiety exposed (55).

Thus, it is possible that Ifit2 inhibits WNV replication by recognizing a 5'-ppp motif on the negative strand RNA in a complex with Ifit1. Against the need for a complex of Ifit proteins for inhibiting wild-type WNV infection, no increased replication of lethality was observed in Ifit1$^{-/-}$ mice (18). In comparison, recent studies showed that flavivirus mutants lacking 2'-O-methyltransferase activity (e.g., WNV-NS5-E218A) were attenuated in wild-type mice (26, 56, 57) yet more virulent in Ifit1$^{+/+}$ mice (17, 18), suggesting that Ifit1 recognizes RNA cap structures lacking 2'-O methylation to inhibit viral replication. Although our prior studies suggested that ectopic expression of Ifit2 might inhibit such viruses, WNV-NS5-E218A
remained attenuated in Ifit2−/− mice; this demonstrates that Ifit2 is not absolutely required for inhibition of WNV strains lacking 2'-O methylation.

Our experiments also revealed no appreciable difference in B and T cell responses between Ifit2−/− and wild-type mice during WNV infection. This suggests that the absence of Ifit2 does not influence the development of effective adaptive immunity during viral infection.

In summary, our results show that Ifit2 contributes to the antiviral response against WNV in vivo, as its targeted deletion was associated with increased lethality and selectively enhanced replication in specific tissues, without an appreciable negative effect of the innate or adaptive T cell or antibody responses. Based on the tissue-specific antiviral effects of Ifit2, we speculate that different cell types might differentially require Ifit2 to restrict WNV replication. The importance of Ifit2 as an antiviral molecule in a given cell type may reflect the qualitative and quantitative ISG gene signature that is induced (10, 58). A more detailed biochemical and cellular analysis is planned to reveal mechanistically how Ifit2 restricts infectivity of WNV in different subsets of cells.
ACKNOWLEDGEMENTS

The authors would like to acknowledge the National Institutes of Health for support of work: grants U19 AI083019, R01 AI104972, and R01 AI104002 (MSD) and CA068782 (GCS).
FIGURE LEGENDS

Figure 1. Survival and viral burden analysis of wild-type and Ifit2−/− mice. (A) Eight-week-old age-matched wild-type (n = 28) and Ifit2−/− (n = 29) mice were infected via the subcutaneous route with 10^2 PFU of WNV and monitored for mortality for 21 days. Survival differences were judged by the log rank test and were statistically significant (P < 0.0001). (B-G) WNV tissue burden and spread in mice after subcutaneous infection. WNV levels in serum (B), draining lymph node (C), spleen (D), kidney (E), brain (F), and spinal cord (G) of wild-type and Ifit2−/− mice were measured by qRT-PCR (B and C) or by infectious plaque assay (D to G) of samples harvested at the indicated time points. Data are shown as WNV genome equivalents per microgram of 18S rRNA (r18S) or PFU per gram of tissue for 3 to 15 mice per time point. Solid lines represent the median viral titer, and dotted lines denote the limit of detection of the respective assays. Asterisks indicate values that are statistically significant (*, P < 0.05; ***, P < 0.0001).

Figure 2. WNV replication in regions of the CNS of Ifit2−/− mice after subcutaneous infection. Wild-type and Ifit2−/− mice were infected with 10^2 PFU of WNV via the subcutaneous route. Different regions of the brain were harvested at day 9: (A) olfactory bulb; (B) cerebral cortex; (C) brain stem; (D) cerebellum; and (E) spinal cord. Tissue homogenates were analyzed for viral burden by plaque assay. Data are shown as PFU per gram of tissue from 11 to 14 mice per time point. Solid lines represent the median viral titers, and dotted lines indicate the limit of detection of the respective assays. Asterisks indicate values that are statistically significant (**, P < 0.001).

Figure 3. Cytokine levels in serum of wild-type and Ifit2−/− mice after infection with WNV. Wild-type and Ifit2−/− mice were inoculated subcutaneously with 10^2 PFU of WNV, and serum was collected on days 2 to 8 after infection. Type I IFN activity was
determined in a bioassay. Solid lines represent the median concentration, and dotted lines indicate the limit of detection of the respective assays. Asterisks indicate differences that are statistically significant by the Mann-Whitney test (*, $P < 0.05$; ***, $P < 0.0001$).

**Figure 4. Peripheral T cell responses after WNV infection in Ifit2$^{-/-}$ mice.** Wild-type and Ifit2$^{-/-}$ mice were inoculated subcutaneously with $10^2$ PFU of WNV, and spleens were harvested at day 8 after infection. (A-B) Percentage of CD3$^+$ CD4$^+$ (A) or CD3$^+$ CD8$^+$ (B) cells in the spleen after gating on live cells. (C-D) Data are shown as the percentage of CD3$^+$ CD8$^+$ T cells that expressed intracellular IFN-$\gamma$ or TNF-$\alpha$ after D$^b$-restricted NS4B peptide restimulation ex vivo. The differences were not statistically significant, and the data were pooled from two independent experiments with a total of 7 to 8 mice. (E) Flow cytometry dot plots showing intracellular IFN-$\gamma$ and TNF-$\alpha$ staining after NS4B peptide restimulation and gating on CD8$^+$ T cells.

**Figure 5. Leukocyte accumulation in the CNS of Ifit2$^{-/-}$ mice after WNV infection.** Wild-type and Ifit2$^{-/-}$ mice were infected with $10^2$ PFU of WNV by a subcutaneous route, and 8 days later brains were harvested and leukocytes were isolated by Percoll gradient centrifugation. (A) Total percentage and number of CD3$^+$ CD8$^+$ T cells. (B) Total percentage and numbers of CD3$^+$ CD8$^+$ T cells that expressed intracellular IFN-$\gamma$, or TNF-$\alpha$ after restimulation with a D$^b$-restricted NS4B peptide. (C) Flow cytometry dot plots showing intracellular IFN-$\gamma$ and TNF-$\alpha$ cells after peptide restimulation and gating on CD8$^+$ T cells. (D) Total percentage and numbers of activated microglia (CD11b$^{\text{high}}$ CD45$^{\text{low}}$) and macrophages (CD11b$^{\text{high}}$ CD45$^{\text{high}}$). The differences were not statistically significant, and the data were pooled from two independent experiments with a total of 7 to 8 mice. (E) Flow cytometry dot plots indicating gating strategy for defining activated microglia and macrophages.
Figure 6. WNV-specific IgM and IgG responses in wild-type and Ifit2−/− mice.

Wild-type and Ifit2−/− mice were infected with WNV via the subcutaneous route, and serum was collected at the indicated time points. The development of WNV-specific IgM (A) or IgG (B) was determined by ELISA using purified WNV E protein. (C) Sera were harvested from animals at the indicated times post infection and tested for neutralization activity using a focus reduction assay (see Methods). Data represent the effective reciprocal dilution of sera that produced 50% neutralization of WNV infection (EC50). Data are from 7 to 11 mice per group. Differences were not statistically significant (P > 0.05) as judged by the Mann-Whitney test.

Figure 7. WNV replication in wild-type and Ifit2−/− primary MEFs, myeloid cells and neurons. Primary cells from wild-type and Ifit2−/− mice were infected with WNV, and viral replication from 6 to 72 h was measured by focus-forming assay. Shown is data from (A) Bone marrow-derived macrophages (MOI, 0.01), (B) cortical neurons (MOI, 0.001), (C) MEFs (MOI, 0.01), (D) cerebellar granule cell neurons (MOI, 0.001), and (E) bone marrow-derived dendritic cells (MOI, 0.001). (F-H) MEFs (F) and bone marrow-derived macrophages (G and H) were pre-treated with 10 IU/ml of IFN-β (F and G) or 0.4 ng/ml of IFN-ζ (H) for 4 hours, infected with WNV, and viral replication was measured. Asterisks indicate differences that are statistically significant by the Mann-Whitney test (*, P < 0.05; **, P < 0.001; ***, P < 0.0001).

Figure 8. WNV replication in regions of the CNS of Ifit2−/− mice after intracranial infection. Wild-type and Ifit2−/− mice were infected with 10^5 PFU of WNV in 10 μl of HBSS supplemented with 1% FBS via the intracranial route. Different regions of the contralateral brain were harvested at the indicated time points: (A) olfactory bulb; (B) cerebral cortex; (C) brain stem; (D) cerebellum; and (E) spinal cord. Tissue homogenates
were analyzed for viral burden by plaque assay. Data are shown as PFU per gram of tissue for 7 to 18 mice per time point. Solid lines represent the median viral titers, and dotted lines indicate the limit of detection of the respective assays. Asterisks indicate values that are statistically significant (**, $P < 0.001$; ***, $P < 0.0001$).
REFERENCES


