Expansion of polyfunctional HIV-specific T cells upon stimulation with mRNA electroporated dendritic cells in the presence of immunomodulatory drugs

Short title: Effects of IMiDs on HIV-specific T cells

Brenda De Keersmaecker¹, Sabine D. Allard², Patrick Lacor², Rik Schots¹, Kris Thielemans¹ and Joeri L. Aerts¹

¹ Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
² Department of Internal Medicine and Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
³ Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium

Abstract word count: 202
Text word count: 5104

Corresponding author: Brenda De Keersmaecker, Laboratory of Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103, room E 206, 1090 Brussels, Belgium, phone: 32-2-477.45.69 – fax: 32-2-477.45.69 – e-mail: bdekeers@vub.ac.be
ABSTRACT

Recently, it has been demonstrated that disease progression during HIV infection is not merely determined by the number of HIV-specific T cells, but rather by their quality. Therefore, strategies to specifically enhance or induce high quality HIV-specific T-cell responses are necessary to develop effective immune therapies. Thalidomide, lenalidomide and pomalidomide have a strong capacity to boost immune responses and are therefore referred to as immunomodulatory drugs (IMiDs). We evaluated the effects of lenalidomide and pomalidomide on HIV-specific T cells. We found that the presence of IMiDs during in vitro T-cell stimulation with dendritic cells electroporated with Gag or Nef encoding mRNA resulted in higher numbers of cytokine secreting HIV-specific CD8+ T cells, particularly inducing polyfunctional HIV-specific CD8+ T cells with an enhanced lytic capacity. Furthermore, CD8+ T-cell responses were detected upon stimulation with lower antigenic peptide concentrations and a higher number of Gag epitopes were recognized upon addition of IMiDs. Finally, IMiDs reduced the proliferation of the HIV-specific CD4+ T cells while increasing the number of polyfunctional CD4+ T cells. These results provide new information about the effects of IMiDs on antigen-specific T cells and suggest that these drugs might increase the efficacy of immune therapies for infectious diseases and cancer.
INTRODUCTION

The host immune responses greatly influence the clinical course of an HIV infection. In this regard, the presence, and more importantly, the quality of HIV-specific T cell-responses may determine the degree of disease progression (3, 9, 43). Since long-term administration of combination antiretroviral therapy (cART) is associated with several limitations, attempts have been made to manipulate the immune system in such a way that HIV-infection could be prevented or controlled in the absence of cART (12). Although several studies have shown that HIV-specific immune responses can be enhanced by therapeutic vaccinations, such as dendritic cell (DC)-based vaccines (reviewed in 25), these interventions lacked sustained clinical responses. Therefore, new therapeutic strategies that specifically enhance or induce high quality HIV-specific CD8+ T cell-responses are needed to design more effective immune therapies.

Thalidomide (α-N-phthalimido-glutarimide) was developed in 1954 as a sedative agent during pregnancy but was removed from the market in the 1960s due to its teratogenic characteristics. Afterwards, the drug was revived as an effective therapy for a number of disorders since it was shown to inhibit TNF-α production by human monocytes (46) and was found to have anti-angiogenic effects (17). More recently, it has been demonstrated that thalidomide has immunomodulatory properties, resulting in T-cell costimulation (35) and natural killer (NK)-cell and NKT-cell activation (13, 18). Accordingly, thalidomide has been successfully used to treat immune-mediated diseases such as erythema nodosum leprosum (36) and inflammatory bowel diseases (5). Currently, its most frequent clinical application is in the treatment of multiple myeloma, generally in combination with dexamethasone (reviewed in 44).
Given the potency of thalidomide in the treatment of several diseases, and the fact that important side effects are associated with its use, a quest for more potent thalidomide analogues with less toxicity was initiated and resulted in the development of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide. Interestingly, these IMiDs are not only up to 50 000-fold more potent in inhibiting TNF-α production \textit{in vitro} (16), but are also characterized by a stronger T-cell costimulatory capacity (15), which is an interesting feature in the search for more effective HIV immunotherapies. Indeed, Haslett \textit{et al.} previously showed that lenalidomide is a potent costimulator of virus-specific CD8\(^+\) T cells (27).

DCs are powerful stimulators of HIV-specific T cells \textit{in vitro} (2, 50) and are currently tested as a therapeutic HIV vaccine in several clinical trials (25). Although HIV-specific immune responses are clearly enhanced after vaccination with DCs (1, 23, 24, 37, 45), the clinical responses induced by DC-based vaccines are generally disappointing (1, 23). We investigated the effects of low doses of lenalidomide and pomalidomide on HIV-specific T cells stimulated by DCs \textit{in vitro}. We evaluated the effects of these IMiDs on CD4\(^+\) and CD8\(^+\) T-cell proliferation, cytokine production and the degree of (poly)functionality. Furthermore, we analyzed the influence of IMiDs on the breadth of the CD8\(^+\) T-cell responses.
METHODS

Study subjects

HIV-1 infected patients were recruited from the Infectious Diseases Department of the Universitair Ziekenhuis Brussel (UZ Brussel, Brussels, Belgium). Approval for this study was obtained from the institutional review board and informed consent was provided according to the Declaration of Helsinki. Patient selection criteria were: HIV-1 seropositivity as determined by Western blotting, stable cART regimen with CD4+ T-cell count ≥500/mm³ and plasma viral load (pVL) <50 RNA copies/ml for at least 3 and 6 months, respectively. Eleven patients were included in this study. These patients were on cART for a median time of 48 months (range: 12-168 months).

IMiDs

Lenalidomide (CC-5013, IMiD3) and pomalidomide (CC-4047, IMiD1) were obtained from Selleck Chemicals LLC (Houston, USA), dissolved in DMSO (Sigma, St. Louis, MO, USA) at a concentration of 80 mM and stored in aliquots at -20°C.

mRNA constructs

The mRNA constructs encoding pGEM-sig-Nef-DC-LAMP and pST1-sig-Gag-DC-LAMP were described previously (1). The pGEM-sig-MelanA-DC-LAMP mRNA construct was used as control mRNA and was described earlier (49).
Synthetic peptides

HIV-1 subtype B consensus Gag and Nef 15-mer peptides overlapping by 11 amino acids were obtained from the NIH AIDS Research & Reference Reagent Program (Rockville, MD, USA). The peptides were dissolved in DMSO, further diluted in 10 mM acetic acid and stored at a concentration of 2 mg/ml at -20°C. Gag peptides were pooled (12 pools of 10-13 peptides) and used at a concentration of 2 μg/ml.

T-cell stimulations

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by Ficoll-Hypaque gradient centrifugation (Axis-Shield, Oslo, Norway), after which they were frozen in heat-inactivated human AB serum (PAA laboratories, Linz, Austria) supplemented with 10% DMSO and stored in liquid nitrogen. PBMCs were thawed and rested overnight in Iscove’s Modified Dulbecco’s Medium (IMDM, Cambrex, Verviers, Belgium) supplemented with 10% heat-inactivated human AB serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine, 0.24 mM L-asparagine and 0.55 mM L-arginine (all from Cambrex), further referred to as lymphocyte medium, in the presence of 25 U/ml IL-2 (Chiron, Emeryville, CA, USA) and 10 U/ml DNase I (Sigma-Aldrich). The next day, purified CD4+ and CD8+ T cells were obtained using CD4 and CD8 coated MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany), respectively. T-cell stimulations were performed in lymphocyte medium at a concentration of 2 million T cells/ml. One hour before they were co-cultured with DCs, the T cells were pre-treated
with the IMiDs or an equal volume of lymphocyte medium (‘no IMiDs’ cultures). Afterwards, DCs electroporated with mRNA encoding either Gag or Nef were added at a DC:T cell ratio of 1:10. Every 48 hours, IMiDs or an equal volume of lymphocyte medium (‘no IMiDs’ cultures) were added to the T-cell stimulations.

DC generation, maturation and antigen loading

To generate DCs, PBMCs were seeded in T175 cm² tissue culture flasks (Falcon, Becton Dickinson (BD), San Jose, CA, USA) in X-vivo 15 medium (Cambrex) supplemented with 1% heat-inactivated human AB serum, further referred to as DC medium, and incubated for 2 h at 37°C to allow plastic adherence. Non-adherent cells were removed by washing with PBS (Cambrex) and cryopreserved until further use as a T-cell source. Adherent cells were cultured in DC medium, which was supplemented with 1000 IU/ml GM-CSF and 500 IU/ml IL-4 (both produced in house) on days 0, 2 and 4 of DC generation.

On day 5, the DCs were matured by adding a mixture of inflammatory cytokines containing 100 IU/ml IL-1β, 1000 U/ml IL-6 (both produced in house), 100 U/ml TNF-α (Bachem, Bubendorf, Switzerland), 1 μg/ml PGE2 (Pfizer, Vienna, Austria), 1000 IU/ml GM-CSF and 500 IU/ml IL-4.

On day 6, the mature DCs were harvested, after which they were electroporated with mRNA encoding Gag-DC-LAMP or Nef-DC-LAMP, as described earlier (40). Alternatively, mature DCs were loaded with Gag or Nef peptide(pools) for 2 h in serum-free medium.
Flow cytometry

All flow cytometry analyses were performed on an LSR Fortessa flow cytometer (BD Biosciences). Automatic compensation was performed using CompBeads (BD Biosciences).

Proliferation assays

T cells were labeled with CFSE as described previously (20). Following a stimulation of 6 days stimulation with DCs electroporated with antigen-encoding mRNA, the T cells were harvested and stained with CD3 V450 (BD Biosciences), CD4 PerCP-Cy5.5 (eBioscience, San Diego, CA, USA) and CD8 APC-Cy7 (BD Biosciences) before being analyzed for antigen-specific T-cell proliferation. Aspecific T-cell proliferation, measured after co-culture with mock electroporated DCs, was considered as background.

To test cytokine production by proliferating T cells, the CellTrace Violet cell proliferation kit (Invitrogen, Paisley, UK) was used. T cells were resuspended at 1 million cells/ml in PBS and were incubated with 0.5 μM CellTrace Violet for 20 minutes at 37°C. Afterwards, the cells were washed thoroughly with lymphocyte medium and stimulated with DCs electroporated with antigen-encoding mRNA. On day 7, the T cells were harvested and co-cultured with DCs electroporated with mRNA either encoding the relevant antigen (Gag or Nef) or encoding the control antigen MelanA, in the absence of IMiDs. After 3 hours, GolgiPlug (BD Biosciences) was added to the co-cultures. The following day, the T cells were harvested and stained with CD4 PerCP-Cy5.5 and CD8 APC-Cy7. Intracellular cytokine and chemokine staining was performed as described below. Aspecific T-cell cytokine production, measured upon screening with DCs
electroporated with mRNA encoding MelanA-DC-LAMP, was considered as background.

Intracellular staining

After 10 days of stimulation with DCs, T cells were harvested and co-cultured with DCs electroporated with mRNA either encoding the relevant antigen (Gag or Nef) or encoding the control antigen MelanA, in the absence of IMiDs. For some assays, a CD107a antibody was added to the cocultures (Brilliant Violet 421 anti-human CD107a, clone H4A3, BioLegend, San Diego, USA), in the presence of monensin (GolgiStop, BD Biosciences). After 3 hours, brefeldin (GolgiPlug, BD Biosciences) was added to the cocultures. The following day, the T cells were harvested and stained using the following antibodies: CD3 V450 or CD3 eFluor 605NC (eBioscience), CD4 PerCP-Cy5.5 and/or CD8 APC-Cy7. Fixation and permeabilization of the cells was performed using the Cytofix/Cytoperm kit (BD Biosciences), according to the manufacturer’s instructions.

Intracellular stainings were performed using the following antibodies: IFN-γ PE (clone, 45.B3, eBioscience), TNF-α FITC (clone MAb11, eBioscience), IL-2 APC (clone MQ1-17H12, eBioscience), MIP-1β PE-Cy7 (clone D21-1351, BD Pharmingen) and/or perforin FITC (clone B-D48, Abcam, Cambridge, UK). Aspecific T-cell responses, measured upon screening with DCs electroporated with mRNA encoding MelanA-DC-LAMP, were considered as background.
After 10 days of stimulation with DCs, T cells were harvested. Ten thousand CD8+ T cells were co-cultured with 20,000 peptide pulsed DCs in round-bottom 96-well plates, in the absence of IMiDs. Each condition was performed in triplicate. After 16 hours, culture supernatants were collected and analyzed for IFN-γ production by ELISA (Endogen, PerBio Science, Helsingborg, Sweden), according to the manufacturer’s instructions. T-cell responses were considered to be positive when the IFN-γ production exceeded 50 pg/ml. Aspecific IFN-γ production by the CD8+ T cells, measured upon co-culture with DCs that were not pulsed with peptide, was considered as background.

Data analysis

Flow cytometry data were analyzed using FACS DIVA (BD Biosciences) and FlowJo (Tree Star inc., USA) software. In addition, SPICE version 5.2 software (provided by Dr. Mario Roederer, National Institute of Allergy and Infectious Diseases, Bethesda, USA) was used to analyze polyfunctional T-cell responses. Unless the background is shown, data were corrected for the background by subtraction of the responses measured in the negative control conditions (stimulation with mock electroporated DCs in case of proliferation assays; screening with MelanA electroporated DCs in case of intracellular cytokine stainings and DCs that were not pulsed with peptide in case of ELISA). Statistical analysis was performed using GraphPad Prism version 5.0 software (GraphPad Software, San Diego, California, USA). The results shown in Figure 1A were analyzed by a two-way ANOVA. The results shown in Figures 1 (panels B, C and F), 2B, 5 (panels
A, B and D) and 6 (panels C and D) were analyzed by repeated measures ANOVA. Post-hoc Bonferroni tests were performed to compare individual groups. A Chi-square test was used to compare the number of recognized pools between different conditions in Figure 3.
RESULTS

Immunomodulatory drugs enhance the magnitude of HIV-specific CD8⁺ T-cell responses

First, we tested the effects of IMiDs on HIV-specific T cells responses during overnight assays. Our preliminary results showed that IMiDs did not affect T-cell cytokine production when they were only present during an overnight ‘ex vivo’ stimulation with DCs (data not shown). Therefore, we tested the effect of a longer co-incubation of CD8⁺ T cells with IMiDs during a 10 days stimulation with DCs. The presence of IMiDs at a concentration of 0.5 μM during the first 2 days of CD8⁺ T-cell stimulation already resulted in an enhanced IFN-γ production, but did not increase the TNF-α production. The presence of IMiDs during the first 6 days of stimulation resulted in higher percentages of IFN-γ⁺ and TNF-α⁺ CD8⁺ T cells. The cytokine production was even more enhanced when the IMiDs were present during the 10 days of stimulation (Figure 1A). Based on these results, we decided to stimulate T cells with DCs in the presence of IMiDs for at least 6 days in all further experiments.

We tested the effect of the IMiDs on CD8⁺ T-cell proliferation by performing a CFSE dilution assay (Figure 1B). The presence of lenalidomide or, to a lesser extent, pomalidomide during the stimulation of CD8⁺ T cells with DCs presenting either Gag- or Nef-derived epitopes resulted in an enhanced CD8⁺ T-cell proliferation. Remarkably, low concentrations of IMiDs (0.1 μM) already resulted in a significantly increased HIV-specific CD8⁺ T-cell proliferation (Figure 1B, p<0.01).
The functionality of the CD8\(^+\) T cells was analyzed by performing intracellular cytokine staining. Stimulation of CD8\(^+\) T cells by DCs in the presence of 0.1 \(\mu\)M lenalidomide or pomalidomide already resulted in highly increased percentages of IFN-\(\gamma\) and TNF-\(\alpha\) producing HIV-specific CD8\(^+\) T cells (Figure 1C). Finally, we analyzed the cytotoxic potential of the HIV-specific CD8\(^+\) T cells by measuring the expression of CD107a and perforin. A higher percentage of CD107a\(^+\) IFN-\(\gamma\)^+ CD8\(^+\) T cells was found in conditions stimulated in the presence of IMiDs (Figure 1D). A high expression of perforin within the CD107a\(^+\) CD8\(^+\) T cells confirmed their cytotoxic potential (Figure 1E). In addition, in the majority of the experiments, the perforin expression within the CD107a\(^+\) CD8\(^+\) T cells was enhanced when the cells were stimulated in the presence of IMiDs (Figure 1E-F).

Immunomodulatory drugs induce polyfunctional HIV-specific CD8\(^+\) T cells

We further investigated the effect of IMiDs by determining the number of polyfunctional CD8\(^+\) T cells after antigen-specific T-cell stimulation. The CD8\(^+\) T cells were stained intracellularly to simultaneously detect IFN-\(\gamma\), TNF-\(\alpha\), IL-2 and MIP-1\(\beta\) production (Figure 2A). CD8\(^+\) T cells stimulated in the absence of IMiDs were characterized by a mono- or bifunctional phenotype whereas the presence of lenalidomide or pomalidomide induced CD8\(^+\) T cells with a polyfunctional cytokine expression profile (simultaneous production of 3 to 4 cytokines/chemokines) (Figures 2B-C and Supplemental figure 1). Upon stimulation in the presence of IMiDs, the percentages CD8\(^+\) T cells producing 1, 2, 3 or 4 cytokines/chemokines increased up to 6-, 12-, 24- and 29-fold, respectively. Whereas the HIV-specific CD8\(^+\) T-cell response was generally dominated by IFN-\(\gamma\) producing cells in the conditions stimulated without IMiDs, the presence of lenalidomide...
or pomalidomide during the stimulation resulted in increased numbers of TNF-α, IL-2 and MIP-1β producing CD8+ T cells as well (Supplemental figure 1).

The breadth of HIV-specific CD8+ T-cell responses is increased upon stimulation in the presence of IMiDs

To test the influence of IMiDs on the breadth of epitope recognition, we stimulated CD8+ T cells for 10 days with DCs electroporated with Gag encoding mRNA in the presence or in the absence of lenalidomide or pomalidomide. Afterwards, the IFN-γ production by the CD8+ T cells in response to DCs pulsed with Gag peptide pools was analyzed performing an ELISA. The number of peptide pools recognized by the CD8+ T cells increased when the stimulation was performed in the presence of lenalidomide. Upon treatment with pomalidomide, this number was even higher: more than 6 out of 12 Gag peptide pools were recognized by the CD8+ T cells present in 2 out of 4 patients (Figure 3).

Effects of IMiDs on the antigen sensitivity of HIV-specific CD8+ T-cell responses

Next, we evaluated the antigen sensitivity of the HIV-specific CD8+ T cells. Purified CD8+ T cells were stimulated for 10 days with Gag or Nef electroporated DCs. Afterwards, the CD8+ T cells were co-cultured with DCs pulsed with increasing concentrations (ranging from 0.128 ng/ml to 2 μg/ml) of a Gag or a Nef peptide for which an antigen-specific T cell response was previously detected with an ex vivo ELISpot. The IFN-γ concentration in the culture supernatants was measured by ELISA. CD8+ T cells stimulated in the presence of IMiDs responded to lower peptide
concentrations. This effect was more pronounced for pomalidomide compared to lenalidomide (Figure 4A). A Chi-square test showed that for patients 1 and 3 a significantly increased breadth of the Gag-specific CD8$^+$ T-cell response was observed after *in vitro* stimulation in the presence of pomalidomide (p=0.0108 and p<0.0001, respectively). However, the EC50 peptide concentration was not altered in the presence of IMiDs, indicating that IMiDs do not affect the antigen avidity of HIV-specific CD8$^+$ T cells (Figure 4B).

IMiDs abrogate the proliferation but not the cytokine production of HIV-specific CD4$^+$ T cells

Based on the stimulatory effects of IMiDs on HIV-specific CD8$^+$ T cells, we further investigated whether IMiDs had an influence on HIV-specific CD4$^+$ T cells. Purified CD4$^+$ T cells were stimulated with Gag or Nef electroporated DCs in the absence or in the presence of IMiDs and the CD4$^+$ T-cell proliferation was determined by performing CFSE dilution assays. In contrast to the increased CD8$^+$ T-cell proliferation observed upon *in vitro* treatment with either lenalidomide or pomalidomide (Figure 1B), IMiDs significantly dampened the proliferation of HIV-specific CD4$^+$ T cells in a dose-dependent manner (p<0.05). This effect was more pronounced for pomalidomide than for lenalidomide (Figure 5A). However, we observed that the cytokine secretion by HIV-specific CD4$^+$ T cells was not reduced upon stimulation in the presence of IMiDs (Figures 5B-C). In contrast, upon treatment with lenalidomide, there was a trend towards higher numbers of cytokine producing HIV-specific CD4$^+$ T cells, which did not reach statistical significance (Figure 5B). In addition, we investigated the degree of
polyfunctionality of HIV-specific CD4\(^+\) T cells, which was, in analogy with the CD8\(^+\) T cells, increased upon treatment with IMiDs: the percentages of CD4\(^+\) T cells producing 1, 2, 3 or 4 cytokines/chemokines increased up to 1.3-, 1.5-, 2.4- and 3.7-fold, respectively (Figures 5C-E and Supplemental figure 2). Interestingly, while pomalidomide did not result in an increased percentage of HIV-specific CD4\(^+\) T cells characterized by a mono- or bifunctional phenotype, treatment with pomalidomide did result in significant higher percentages of CD4\(^+\) T-cells exhibiting 3 or 4 functions (Figure 5D; p<0.05). The effect of the IMiDs on polyfunctionality of CD4\(^+\) T cells was however less pronounced compared to the effects observed for the CD8\(^+\) T cells (Figure 2 and Supplemental figure 1).

The relationship between the effects of IMiDs on HIV-specific T-cell proliferation and cytokine production

To gain more insight in the different effects of IMiDs on CD4\(^+\) versus CD8\(^+\) T-cell proliferation (decreased and increased, respectively) and on the CD4\(^+\) T-cell proliferation versus cytokine secretion (decreased and slightly increased, respectively), we simultaneously measured HIV-specific T-cell cytokine production and proliferation (Figure 6). Interestingly, when looking at individual divisions, it was clear that the CD8\(^+\) T-cell fraction that underwent the highest number of divisions (the lowest CellTrace Violet intensity) was strongly enhanced upon stimulation in the presence of IMiDs (Figure 6A). Moreover, it was within this population that the highest level of cytokine production was observed. Nevertheless, the enhanced CD8\(^+\) T-cell cytokine production upon stimulation in the presence of IMiDs could not only be attributed to the reinforced
CD8\(^+\) T-cell proliferation since the percentages of IFN-\(\gamma\), TNF-\(\alpha\) and IL-2 producing cells within the proliferating CD8\(^+\) T-cell population were all higher after stimulation with DCs in the presence of IMiDs, even within the CD8\(^+\) T-cell population that underwent the highest number of divisions (Figure 6A). In addition, IMiDs dampened HIV-specific CD4\(^+\) T-cell proliferation, while the CD4\(^+\) T-cell cytokine production, which could mainly be assigned to the proliferating CD4\(^+\) T cells, was not affected by their co-incubation with IMiDs. The percentage of cytokine producing cells within the proliferating CD4\(^+\) T-cell population was higher after stimulation with DCs in the presence of IMiDs (Figure 6B). Interestingly, the HIV-specific CD8\(^+\) and CD4\(^+\) T cells also produced higher concentrations of cytokines per cell when they were stimulated in the presence of IMiDs (Figures 6C-D).
In this study, we show that the immunomodulatory drugs lenalidomide and pomalidomide costimulate HIV-specific T cells, resulting in an expansion of HIV-specific T cells endowed with several features that were previously shown to be associated with HIV control. *In vitro* T-cell stimulation with DCs electroporated with mRNA encoding HIV antigens in the presence of IMiDs results in higher numbers of proliferating and cytokine producing CD8⁺ T cells, showing a high CD107a and perforin expression. Furthermore, to our knowledge, we show for the first time that the *in vitro* addition of IMiDs results in the induction of polyfunctional HIV-specific CD8⁺ T cells, characterized by an increased breadth of epitope recognition. Although the addition of IMiDs reduced the proliferation of HIV-specific CD4⁺ T cells, it resulted in higher percentages of polyfunctional CD4⁺ T cells.

Thalidomide and its IMiD-analogues were previously shown to be strong costimulators of naïve and memory T-cell responses, including virus-specific CD8⁺ T-cell responses (27, 35, 41). Although the mechanism whereby these agents trigger T cells is not completely understood, it has been shown that lenalidomide induces tyrosine phosphorylation of CD28 on T cells, resulting in an activation of nuclear factor κB (NF-κB) (35). Since important defects in CD28 expression and/or signaling in T cells have been described in both cancer patients and HIV-infected individuals (11, 48, 51) and given the need for new approaches to improve the potency of currently available tools in the search for an effective HIV vaccine, we decided to analyze the effects of IMiDs on HIV-specific T-cell responses. In our study, we used lenalidomide and pomalidomide concentrations of 0.1-0.5 μM. The maximum plasma lenalidomide concentration...
following a standard daily dose of 25 mg is 2.2 μM (14). Thus, the IMiD concentrations we used are relatively low, even compared to physiologically attainable concentrations and are likely relevant for the *in vivo* effects of IMiDs.

In the presence of IMiDs, we observed an enhanced proliferation and cytokine production by HIV-specific CD8⁺ T cells stimulated with dendritic cells, which is in accordance with previously published studies showing a costimulatory effect of IMiDs on antigen-specific T-cell responses (27, 35, 41). Furthermore, we found increased numbers of CD8⁺ T cells degranulating (CD107a⁺), expressing perforin and showing a high degree of functionality (i.e. expressing ≥3 of the following factors: the cytokines IFN-γ, TNF-α and IL-2, and the chemokine MIP-1β) upon *in vitro* addition of IMiDs. It was previously shown the capacity to produce several cytokines/chemokines per antigen-specific T cell is a T-cell characteristic that is associated with HIV non-progression (9). Therefore, the induction of so-called ‘polyfunctional’ CD8⁺ T-cell responses is increasingly regarded as an important outcome for an effective therapeutic vaccine (4). As far as we know, a significant improvement in the number of HIV-specific CD8⁺ T cells that exert 3 or more functions upon *in vitro* T-cell stimulation, as we show in Figure 2, was never reported before. IL-2 production was one of the CD8⁺ T-cell functions that was strongly increased upon *in vitro* stimulation in the presence of IMiDs, which could explain the enhanced CD8⁺ T-cell proliferation. We also observed that T cells stimulated in the presence of IMiDs produced higher concentrations of each of the individual cytokines (IFN-γ, TNF-α or IL-2 on a per cell basis) (Figures 6C-D). This confirms their high degree of polyfunctionality since it has been shown that cells making multiple cytokines simultaneously also produce higher levels of each of these cytokines (18).
The stimulatory effects of IMiDs in combination with Gag- or Nef-electroporated DCs on the magnitude and the quality of HIV-specific CD8+ T-cell responses indicate that these drugs might be promising candidates to enhance the efficacy of DC-based HIV vaccines. Besides inducing polyfunctional HIV-specific CD8+ T-cell responses, IMiDs resulted in a broadening of antigenic epitope recognition and a detectable IFN-γ production by CD8+ T cells upon stimulation with low antigen doses (Figures 3 and 4). The breadth of the HIV-specific T-cell response and the CD8+ T-cell antigen sensitivity are also important T-cell characteristics in the context of HIV immunotherapy (8, 31). First, the number of epitopes recognized by CD8+ T cells may play an important role in the immune control on HIV replication. Indeed, HIV often evades CTL responses by generating viral escape variants, which are then no longer recognized by the CD8+ T cells. An increased number of epitope-specific CTL responses can reduce the rate of viral escape (22). Moreover, Kiepiela et al. showed that an increased breadth of Gag-specific CD8+ T-cell responses is associated with a lower viremia (33). Second, CD8+ T cell responses triggered by low antigenic concentrations are able to recognize cognate peptide-MHC class I complexes present at low densities on the surface of an infected cell in vivo. Consequently, effector functions can be triggered more readily, corresponding with a rapid and effective clearance of virus-infected cells (7, 47). Interestingly, it has been shown that T cells with high levels of antigen avidity exert more T-cell functions at a given antigen density (4). However, IMiDs did not affect the antigen avidity of CD8+ T cells. Thus, the effects we observed in Figure 4A mainly result from the enhanced cytokine production upon stimulation in the presence of IMiDs.
It has been described that IMiDs can increase Th1-type immunity (21). Indeed, we found slightly increased numbers of IFN-γ producing antigen-specific CD4+ T cells upon \textit{in vitro} stimulation in the presence of IMiDs. Moreover, CD4+ T cells exhibited a high degree of polyfunctionality when IMiDs were present during the antigen-specific stimulation. In contrast, proliferation of HIV-specific CD4+ T cells was inhibited by lenalidomide and pomalidomide (Figures 5 and 6B). These results are in accordance with a previous study by Hsu \textit{et al.} who demonstrated that CD4+ T cells stimulated polyclonally in the presence of lenalidomide show a decreased proliferative capacity while producing significantly higher amounts of IL-2 (29). Although a decreased proliferation of HIV-specific CD4+ T cells is a characteristic of HIV-infected patients with a high viral load (39), the increased functionality of the CD4+ T cells, observed upon \textit{in vitro} addition of IMiDs, might compensate for their lower proliferative capacity. Moreover, a decreased CD4+ T-cell proliferation might reduce the number of potential target cells for HIV replication \textit{in vivo}, and could therefore slow down disease progression. Thus, the decreased proliferation but increased functionality of HIV-specific CD4+ T cells, the major target cells for HIV infection, upon addition of IMiDs, might be beneficial in the context of HIV immunotherapy.

Interestingly, while both lenalidomide and pomalidomide improved HIV-specific T-cell responses to some degree, the effects of both IMiDs differed depending on the T-cell function investigated. While the effect of lenalidomide on CD8+ T-cell proliferation was higher, pomalidomide increased the number of T-cell epitopes recognized by the CD8+ T cells, the CD8+ T-cell perforin production and the CD8+ T-cell antigen sensitivity to a higher extent and resulted in a more pronounced decrease of CD4+ T-cell proliferation. It
was previously reported that, compared to thalidomide, lenalidomide is 100-1000 times more potent in stimulating T-cell proliferation and IFN-γ and IL-2 production. In addition, pomalidomide enhances the expression of the transcription factor T-bet, resulting in more pronounced Th1-like effector cells \textit{in vitro} (34). Further research is necessary to determine which of these T-cell characteristics, and thus which type of IMiD, would be most beneficial in the context of HIV immunotherapy.

Since we tested the effects of IMiDs on T cells stimulated with DCs, the T-cell costimulatory effects of the drugs observed in our experiments could have been influenced by their direct effects on DCs. Therefore, we evaluated the expression of several maturation markers (CD40, CD80, CD83, CD86, CD137L, CD70, PD-L1 and PD-L2) and cytokines (IL-10 and IL-12) by DCs cultured in the presence of IMiDs. We did not observe any major effect of IMiDs on the phenotype and cytokine production of cytokine cocktail matured DCs (data not shown), which is in accordance with previously published results (27, 42). These results suggest that the enhanced HIV-specific T-cell responses upon stimulation with antigen-presenting cells in the presence of IMiDs mainly result from the direct effects of IMiDs on the T cells.

Apart from its T-cell costimulatory effects, thalidomide improves the outcome of wasting syndrome and aphthous ulceration in HIV-infected individuals (30, 32). In addition, lenalidomide was recently tested as a treatment for AIDS-related Kaposi’s sarcoma and HIV-associated plasmablastic lymphoma (10, 36). Surprisingly, there are only a limited number of reports investigating the effects of thalidomide treatment on immune responses in HIV-infected patients. Thalidomide stimulates antigen-specific T-cell responses and IL-12 production in HIV-infected patients (6, 28). Furthermore, Hanekom
et al. showed that the expression of CD28 and CD45RO increases upon treatment with thalidomide and that the treatment results in higher numbers of IFN-γ producing Gag-specific CD8+ T-cells in 75% of the patients (26). A case report investigating a cART-treated HIV-patient with 5q minus syndrome showed that lenalidomide treatment resulted in a modest rise of CD4+ T-cell counts, concomitant with an increase in CD8+ T-cell counts. Since thalidomide treatment needs to be discontinued regularly due to adverse effects, lenalidomide and pomalidomide could be alternative treatment options, because these IMiDs are associated with a lower incidence of adverse effects. In addition, lenalidomide is not teratogenic in rabbit models (34). We show here that in addition to its application as a treatment for HIV-related pathologies, low doses of IMiDs could be a valuable addition to currently investigated HIV immunotherapies, such as DC-based therapeutic vaccines. In this study, we used cellular material derived from patients that have an undetectable plasma viral load under stable cART. In the future, it would be very interesting to evaluate whether IMiDs restore HIV-specific CD8+ T-cell responses using exhausted T cells derived from viremic HIV-infected patients.
ACKNOWLEDGEMENTS

The authors would like to thank Carolien Wylock for her help with patient recruitment and Lukasz Bialkowski for technical assistance. We acknowledge Carlo Heirman, Elsy Vaeremans and Xavier Debaere for mRNA preparation. We thank Dr. Rob Gruters (Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands) and Prof. Michel Moutschen (Department of Infectious Diseases and General Internal Medicine, University of Liège, Belgium) for their critical comments and helpful suggestions. We thank the patients who agreed to participate in this study.

The following reagents were obtained through the AIDS Research and Reference Program, Division of AIDS, NIAID, NIH: HIV-1 Consensus B Gag and Nef (15-mer) peptides – Complete sets.

This work was supported by the Institute for Science and Technology (IWT, IWT-TBM 60511), by the University Research fund (VUB, OZR1801) and by the Stichting Tegen Kanker. SDA is a PhD student and JLA is a postdoctoral fellow of the Fund for Scientific Research – Flanders, Belgium (FWO).

CONFLICT OF INTEREST DISCLOSURES

The authors have no competing financial interests.
REFERENCES

thalidomide for symptomatic inflammatory bowel disease. J Gastroenterol Hepatol 17:135-139.

40. Michiels, A., S. Tuyaerts, A. Bonehill, J. Corthals, K. Breckpot, C. Heirman, S. Van Meirvenne, M. Dullaers, S. Allard, F. Brasseur, P. van der Bruggen, and...

De Roo, R. Colebunders, G. Van den Bosch, D. R. Van Bockstaele, V. F. Van
Tendeloo, S. Allard, B. Verrier, C. Marañón, G. Hoeffel, A. Hosmalin, Z. N.
Berneman, and G. Vanham. 2006. Efficient stimulation of HIV-1-specific T
cells using dendritic cells electroporated with mRNA encoding autologous HIV-1

51. Yadav, A., S. Pati, A. Nyugen, O. Barabitskaja, P. Mondal, M. Anderson, R. C.
Gallo, D. L. Huso, and W. Reid. 2006. HIV-1 transgenic rat CD4+ T cells
develop decreased CD28 responsiveness and suboptimal Lck tyrosine
FIGURE LEGENDS

Figure 1. IMiDs enhance the magnitude of HIV-specific CD8+ T-cell responses

Purified CD8+ T cells were stimulated with DCs electroporated with mRNA encoding Gag or Nef. (A) T cells were stimulated in the presence of IMiDs (0.5 μM) for 2, 6 or 10 days before the IMiDs were removed by washing the cells. On day 10, the CD8+ T cells were co-cultured overnight with DCs and cytokine secretion was determined by intracellular staining. The bar graphs show the percentages of IFN-γ+ (left) or TNF-α+ (right) CD8+ T cells, relative to the ‘no IMiDs’ condition (mean of 5 experiments). The error bars show the SEM. T-cell responses that differed significantly with the ‘no IMiDs’ condition are indicated. (B) T cells were stimulated in the presence of IMiDs (0.1-0.5 μM) for 6 days, after which CD8+ T-cell proliferation was measured by CFSE dilution assays. The CD8+ T-cell proliferation, relative to the ‘no IMiDs’ condition, is depicted. (C-F) After 10 days of stimulation, CD8+ T cells were co-cultured overnight with DCs electroporated with Gag or Nef, after which antigen-specific T-cell responses were analyzed. (C) The overview graphs show the percentage of IFN-γ (left) and TNF-α (right) producing CD8+ T cells. (D) Flow cytometry plots showing the co-expression of IFN-γ and CD107a on HIV-specific CD8+ T cells. One representative out of 7 experiments is shown. (E) Histogram overlays showing the perforin expression in CD107a+ CD8+ T cells. One representative out of 7 experiments is shown. (F) Overview graphs showing the perforin MFI in CD107a+ CD8+ T cells. On the overview graphs shown in panels B, C and F, each symbol represents one experiment. Equal shapes indicate that the Gag-specific (filled symbols) or the Nef-specific (open symbols) CD8+
Figure 2. IMiDs induce polyfunctional HIV-specific CD8+ T-cells

Purified CD8+ T cells were stimulated with DCs electroporated with mRNA encoding Gag or Nef. After 10 days of stimulation, the cells were co-cultured with DCs electroporated with Gag or Nef to measure antigen-specific cytokine and chemokine production by intracellular stainings. (A) Flow cytometry plots showing the (co-)expression of IFN-γ, TNF-α, IL-2 and MIP-1β on CD8+ T cells. (B) Overview graphs showing the percentages of CD8+ T cells producing 1, 2, 3 or 4 cytokines/chemokines. Each symbol represents one experiment. Equal shapes indicate that the Gag-specific (filled symbols) or the Nef-specific (open symbols) CD8+ T-cell responses of the same patient were analyzed. Horizontal lines indicate the mean of all experiments. *P<0.05, **P<0.01, ***P<0.001. (C) Pie charts showing the proportion of CD8+ T cells displaying 1 to 4 functions. In panels A and C, one representative example out of 7 experiments is shown.

Figure 3. The breadth of HIV-specific CD8+ T-cell responses is increased upon stimulation in the presence of IMiDs

Purified CD8+ T cells were stimulated with Gag electroporated DCs. After 10 days of stimulation, the cells were co-cultured with DCs pulsed with Gag peptide pools. IFN-γ secretion in the culture supernatants was detected by ELISA. Error bars indicate the SEM.
of 3 replicate wells. Vertical lines on the graphs indicate an IFN-γ production of 50 pg/ml (the cut-off for positivity).

Figure 4. Effects of IMiDs on the antigen sensitivity of HIV specific CD8+ T cells

Purified CD8+ T cells were stimulated with DCs electroporated with Gag encoding mRNA. After 10 days of stimulation, the cells were co-cultured with DCs pulsed with a 5-fold serial dilution of a Gag or Nef peptide for which a T-cell response was previously detected by an ex vivo ELISpot. IFN-γ secretion in the culture supernatants was detected by ELISA. Error bars indicate the SEM of 3 replicate wells. The IFN-γ concentration in response to peptide pulsed DCs is indicated on the graphs shown in panel A. Horizontal lines on the graphs indicate an IFN-γ production of 50 pg/ml (the cut-off for positivity). The percentage of the maximal IFN-γ concentration reached upon coculture with peptide pulsed DCs is shown on the graphs in panel B. Grey curves indicate that the IFN-γ concentration remained <50 pg/ml for all peptide concentrations. Patient numbers correspond to the patient numbers shown in Figure 3.

Figure 5. IMiDs abrogate the proliferation but not the cytokine production of HIV-specific CD4+ T cells

Purified CD4+ T cells were stimulated with DCs electroporated with mRNA encoding Gag or Nef. (A) After 6 days of stimulation, CD4+ T-cell proliferation was measured by CFSE dilution assays. The CD4+ T-cell proliferation, relative to the ‘no IMiDs’ condition, is depicted. (B-E) After 10 days of stimulation, the cells were co-cultured...
overnight with DCs electroporated with Gag or Nef encoding mRNA to measure antigen-specific cytokine production. (B) The overview graphs show the percentage of IFN-γ⁺ (left) and TNF-α⁺ (right) producing antigen-specific CD4⁺ T cells. (C) Flow cytometry plots showing the (co-)expression of IFN-γ, TNF-α, IL-2 and MIP-1β on CD4⁺ T cells. (D) Overview graphs showing the percentages of CD4⁺ T cells producing 1, 2, 3 or 4 cytokines/chemokines. (E) Pie charts showing the proportion of the total CD4⁺ T-cells displaying 1 to 4 functions. On the overview graphs shown in panels A, B and D, each symbol represents one experiment. Equal shapes indicate that the Gag-specific (filled symbols) or the Nef-specific (open symbols) CD4⁺ T-cell responses of the same patient were analyzed. Horizontal lines indicate the mean of all experiments. *P<0.05, **P<0.01, ***P<0.001. In panels C and E, one representative out of 6 experiments is shown.

Figure 6. Relationship between the effects of IMiDs on HIV-specific T-cell proliferation and cytokine production

Purified CD8⁺ (panel A) and CD4⁺ (panel B) T cells were labeled with CellTrace Violet and stimulated with DCs electroporated antigen encoding mRNA. On day 7, the T cells were co-cultured overnight with DCs electroporated with Gag or Nef encoding mRNA before the cells were stained intracellularly to measure cytokine production. The percentages on the flow cytometry plots indicate the percentage of cytokine producing (IFN-γ⁺, TNF-α⁺ or IL-2⁺) cells within the proliferating (CellTrace Violetlow) CD4⁺ or CD8⁺ T-cell population. In panel A, one representative out of 5 experiments is shown, whereas one representative out of 6 experiments is shown in panel B. (C-D) IFN-γ (left),
TNF-α (middle) and IL-2 (right) MFI of cytokine^+ CellTrace Violet^low CD8^+ (C) and CD4^+ (D) T cells. Each symbol represents one experiment. Equal shapes indicate that the Gag-specific (filled symbols) or the Nef-specific (open symbols) T-cell responses of the same patient were analyzed. Horizontal lines indicate the mean of all experiments. *P<0.05, **P<0.01, ***P<0.001.