Genetic inactivation of COPI coatamer separately inhibits vesicular stomatitis
virus entry and gene expression.

David K. Cureton*†, Rebeca Burdeinick-Kerr, and Sean P.J. Whelan*

Department of Microbiology and Immunobiology, Harvard Medical School,
Boston, MA, 02115, USA.

Running title: COPI coatamer function in VSV entry.

Abstract word count: 189
Text word count: 11340

*Co-corresponding authors.
Department of Microbiology and Immunobiology
Harvard Medical School
200 Longwood Ave.
Boston, MA 02115
E-mail: swhelan@hms.harvard.edu
Tel 617-432-1923
Fax 617-738-7664

†Present address: Department of Cell Biology, Harvard Medical School, and Immune Disease Institute, Boston, MA, 02115, USA.
Viruses co-opt cellular membrane transport to invade cells, establish intracellular sites of replication, and release progeny virions. Recent genome-wide RNA interference (RNAi) screens revealed that genetically divergent viruses require biosynthetic membrane transport by the COPI coatamer complex for efficient replication. Here we found that disrupting COPI function by RNAi inhibited an early stage of vesicular stomatitis virus (VSV) replication. To dissect which replication stage(s) were affected by coatamer inactivation, we used visual and biochemical assays to independently measure the efficiency of viral entry and gene expression in hamster (IdIF) cells depleted of the temperature-sensitive ε-COP subunit. We show that ε-COP depletion for 12 h caused a primary block to virus internalization and a secondary defect in viral gene expression. Using brefeldin A, a chemical inhibitor of COPI function, we demonstrate that short-term (1 h) BFA treatments inhibit VSV gene expression, while only long-term (12 h) treatments block virus entry. We conclude that prolonged coatamer inactivation perturbs cellular endocytic transport and thereby indirectly impairs VSV entry. Our results offer an explanation of why COPI coatamer is frequently identified in screens for cellular factors that support cell invasion by microbial pathogens.
INTRODUCTION

Vesicular stomatitis virus (VSV) is the prototype member of the Rhabdoviridae family. In cell culture, VSV can replicate in a wide variety of cell types, including nearly all mammalian cells as well as cells from insects (47), nematodes (55, 69), and yeast (40). This capacity to infect cells from model genetic organisms, along with its genetic tractability, makes VSV an ideal model for probing virus-host cell interactions. VSV virions are bullet-shaped and measure ~75 x 200 nm (15, 49). Each virion contains a condensed, helical ribonucleoprotein (RNP) core that consists of a single strand of viral genomic RNA encased within a protein shell of nucleocapsid (N) protein, together with the phosphoprotein (P) and large (L) polymerase protein that constitute the viral RNA-dependent RNA polymerase (39, 49). The helical packing of the RNP is stabilized by matrix (M) proteins, and the M-RNP complex is tightly enveloped within a bilayer of lipids (48, 49). Protruding from this lipid bilayer are ~400 homotrimeric viral attachment and fusion glycoprotein (G) (49, 61).

The VSV replication cycle can be summarized as follows. Virus particles attach to target cells through low-affinity, electrostatic interactions between G proteins and charged moieties on the cell surface (4, 10). Cells internalize the attached particles by clathrin-dependent endocytosis (14, 15, 29, 41, 58), and this uptake mechanism delivers the particles to early endosomes (EEs). Endosome acidification to pH ≤6.3 triggers conformational changes in the G proteins that in turn force fusion between the viral and cellular membranes and release of the viral RNP into the host cell cytosol (67). The endosomal location(s) of VSV membrane fusion and RNP release are currently uncertain, with available evidence supporting membrane penetration of EEs (29, 38, 57) as well as downstream endosomal compartments (32). During or shortly after RNP release, M protein dissociates from the RNP to facilitate mRNA synthesis in the cell cytoplasm (44, 53).
Translation of the viral mRNA is essential to support viral genome replication, since it provides a source of N protein necessary to encapsidate the genomic and antigenomic RNA. Newly-synthesized RNPs are then assembled into progeny particles at the cellular plasma membrane, where M proteins drive RNP budding through the G-containing lipid bilayer (39).

Genome-wide RNA interference (RNAi) screens have implicated numerous cellular factors as important for the replication of obligate intracellular pathogens. One cellular factor that has been identified in a majority of these screens is COPI coatomer (1, 2, 8, 12, 13, 17, 18, 24, 31, 35, 45, 50, 51, 60). Coatomer is comprised of 7 subunits (α-, β-, β'-, δ-, ε-, γ-, ζ-COP) that are recruited as subcomplexes from the cell cytosol to Golgi membranes by the GTPase, ADP ribosylation factor 1 (Arf1) (7). Assembly of these subcomplexes into a coat-like structure promotes the budding of membrane-bound vesicles that transport cargos within the cellular biosynthetic pathway (6). In addition to this well-characterized function, COPI has also been ascribed a role in endocytic cargo transport from EEs to LEs. In vitro, coatomer subunits bind endosomal membranes and facilitate cargo delivery from isolated EEs to LEs (3, 21, 22, 68). In cells, COPI subunits also associate with endosomes, yet the precise function of coatomer in this context remains uncertain (68).

The consequences of coatomer inactivation on cellular membrane traffic have been extensively investigated. In cells treated with a chemical inhibitor of coatomer function, brefeldin A, the Golgi apparatus merges with the endoplasmic reticulum (ER) and endocytic compartments, which arrests protein secretion and decreases endocytic cargo transport to lysosomes (26, 36, 37, 46). Depletion of the temperature-sensitive ε-COP subunit in Chinese hamster ovary (IdlF) cells also blocks protein secretion, induces low density lipoprotein receptor degradation, and decreases the uptake and delivery of certain endocytic cargos to lysosomes (16,
In the context of viral infections, BFA inhibits stages of viral replication that rely upon cellular biosynthetic transport (19, 28, 63, 64), and ε-COP depletion in ldlF cells blocks early stages of Semliki forest virus (SFV) and VSV replication (16). However, in most virus systems, it is still unclear which steps of viral replication directly require coatomer function.

In this study, we examined how COPI inactivation impairs VSV infection. We employed genetic and chemical methods to inhibit COPI function and a panel of new assays to quantify the effects of these perturbations on steps of virus entry and gene expression. We found that genetic depletion of ε-COP inhibited VSV internalization and viral gene expression. However, the effect of ε-COP depletion on virus internalization could only be reproduced by long-term treatment of cells with BFA. We conclude that COPI function is critical for multiple stages of VSV replication. Moreover, our findings underscore that long-term coatomer inactivation indirectly perturbs endocytic transport, which may contribute to the inhibitory effect of siRNA-mediated COPI depletion on cell invasion by other microbes.
MATERIALS AND METHODS

Cells and reagents

Baby hamster kidney BsrT7 cells (9) and human cervix adenocarcinoma HeLa S3 cells (ATCC clone CCL-2.2) were maintained at 37°C and 5% CO₂ in Dulbecco’s Modified Eagle’s Medium (Invitrogen Corporation; Carlsbad, CA) containing 10% fetal bovine serum (FBS) (Tissue Culture Biologicals; Tulare, CA). Chinese hamster ovary (CHO) and ldIF cells (gift of Monty Krieger, MIT) were maintained at 34°C and 5% CO₂ in Ham’s F-12 Nutrient Media (Invitrogen) supplemented with 5% FBS (Tissue Culture Biologicals). Puromycin, cyclohexamide (CHX), brefeldin A (BFA), bafilomycin A1 (BAF), and ammonium chloride were purchased from Sigma-Aldrich (St. Louis, MO).

Recombinant viruses

The infectious cDNA clones of VSV (65), VSV-eGFP (11), and VSV eGFP-P (55) were previously reported. The VSV cDNA clone encoding an amino-terminal fusion of renilla luciferase to the phosphoprotein (VSV REN-P) was constructed as for VSV eGFP-P (55) except that the gene for renilla luciferase was substituted for that of eGFP. VSV REN-P was recovered from plasmid DNA using standard reverse genetics techniques (65). Working stocks were prepared from plaque isolated virus, and sequencing of the entire viral genome confirmed that no undesired mutations were introduced during virus recovery and amplification. To prepare purified virus stocks, concentrated virions were banded on a linear 15-45% sucrose gradient in NTE (10 mM Tris pH 7.4, 100 mM NaCl, 1 mM EDTA), and isolated particles were stored in NTE at -80°C. Virus titers were measured by plaque assay on Vero cells. To examine the protein...
composition of purified virions, 5 μg of total viral protein was analyzed by electrophoresis through a low-bis 10% SDS-PAGE gel, and the proteins were visualized by Coomassie staining.

RNA interference screen

SMART pools (Thermo Fisher Scientific, Dharmacon; Chicago, IL) comprised of four duplexes targeting a single human mRNA transcript were individually arrayed into wells of black, clear bottom 384-well plates (Costar 3712, Corning; Lowell, MA) containing a 1:100 dilution of Lipofectamine 2000 (Invitrogen) in OPTIMEM (Invitrogen). Duplexes and lipids were incubated for 20 min. at RT and mixed with HeLa cells to yield final concentrations of 5x10^4 cells ml\(^{-1}\) and 25 nM siRNA. Plates were inoculated with 1250 HeLa cells per well, and cells were centrifuged for 5 min. at 700 x g. At 48 h post-transfection, the cells (~5000 per well) were inoculated with 25,000 infectious particles of VSV-eGFP (according to titer on Vero cells). This virus dose reproducibly infected ~50% of untransfected HeLa cells. Cells were fixed 7 h later with 2% formaldehyde in PBS. Nuclei were counterstained with 4 μg ml\(^{-1}\) Hoechst nuclear dye (33342; Invitrogen) for 10 min. at RT, and unincorporated dye was removed by washing once with PBS. Images were acquired from each well using a cellWoRX™ High Content Cell Analysis System (Applied Precision Inc.; Issaquah, WA). The total number of cells and percentage of eGFP-positive cells in each image was scored using MetaXpress Software (Molecular Devices; Downingtown, PA).

For each gene, 2 wells in separate plates were transfected with siRNA and then infected with virus. Each well plate contained 1 well each of the following controls: (i) buffer control (BC) - no transfection reagent or siRNA; (ii) cells treated with siGENOME Non-Targeting (NT) siRNA #2 (Dharmacon; Catalog D-001210-02) (negative control for transfection toxicity); (iii) cells...
treated with siGENOME SMARTpool eIF1AX (Dharmacon; Catalog M-011262) targeting eIF1-alpha (positive control, reduces percentage of infected cells by 50%). To compare the relative effects of each siRNA pool on virus infection, the percent of infected cells in each test or control sample was divided by the percent of infected cells in the BC sample from the same plate. The calculated values for test samples from the 2 separate plates were then averaged, multiplied by 100, and plotted ± SD. The calculated values for the non-targeting and eIF1-alpha control samples were averaged across all 5 plates that contained the COPI test samples, multiplied by 100, and plotted ± SD. A secondary screen was conducted in which five coatamer subunits were targeted for siRNA-mediated depletion. All aspects of the secondary screen were performed as in the primary screen except that cells were separately transfected with 25 nM of the four individual siRNAs (see Table 1. for siRNA ID numbers) that comprised the SMARTpools used in the primary screen.

Western blotting

CHO and ldIF cells were harvested, pelleted by centrifugation, and lysed in total cell lysis buffer [25 mM HEPES, 1% Triton X-100, 10% glycerol, 300 mM NaCl, 1.5 mM MgCl₂, 2 mM EDTA, 2 mM EGTA, 1 mM DTT, 1 mM PMSF, Complete protease inhibitor cocktail (Roche Applied Biosciences; Indianapolis, IN)]. Samples were centrifuged for 15 min. at 15,000 x g and 4°C, and 10 μg of total protein was analyzed on a 10% SDS-PAGE gel. Proteins were transferred to a nitrocellulose membrane (GE Healthcare; UK) and blocked in Tris buffered saline (20 mM Tris-HCl pH 7.4, 150 mM NaCl) containing 0.05% Tween-20 (TBST) and 5% w/v milk for 1 h at room temperature (RT). Membranes were incubated with rabbit anti-İ-COP (gift of Monty Krieger) in TBST containing 1% milk for 1 h at RT. Membranes were washed 3 times in TBST.
for a total of 30 min., and the primary antibodies were detected using goat anti-rabbit-HRP antibodies (Sigma-Aldrich) as above. Membranes were washed, and HRP was detected by enhanced chemiluminescence (Thermo Fisher Scientific, Pierce; Rockford, IL) according to the manufacturers’ instructions.

Enzymatic assays for VSV attachment and RNP release

To quantify VSV attachment, confluent CHO or ldlF cells in a 96-well plate were rapidly cooled in an ice water bath and inoculated with 7.5x10⁶ pfu of untreated VSV REN-P (MOI 250) or virus preincubated with a neutralizing monoclonal antibody directed against G protein (IE-2; kind gift of Isabella Novella) (62). Cells and virus were incubated for 1 h at 4°C, and unbound virus was removed by washing. The quantity of attached virus particles was measured by lysis of the virus-cell complexes in the presence of the renilla luciferase substrate (Renilla Luciferase Assay System, Promega; Madison, WI). To detect RNP release by VSV REN-P, CHO cells were inoculated with 60 μM EnduRen (Promega) in Ham’s media containing 2% FBS. After incubation for 30 min. at the indicated temperature, puromycin was added to a final concentration of 50 μg ml⁻¹, and cells were incubated for 1 additional hour. Treated cells were inoculated with 7.5x10⁵ pfu (MOI 25) of untreated VSV REN-P per well or the same quantity of virus preincubated with neutralizing antibody IE-2 (see above), and luminescence was quantified at the indicated times p.i. using a Microbeta TriLux Scintillation Counter (Perkin-Elmer; Waltham, MA). In all experiments, we ensured that the measured luminescence values were within the linear detection range of the instrument.

Measurements of VSV REN-P attachment and RNP release were conducted using triplicate samples for each experimental condition. Data from a single experimental setting are
reported as the mean ± SD from the triplicate samples. If data derive from more than one experiment (see figure legends), the plotted values are an average ± SD of the triplicate means from each experiment.

RNP purification and cell transfection

RNPs were isolated from purified VSV REN-P virions as described before (59). The protein composition of purified RNPs was analyzed by SDS-PAGE analysis, which showed that the RNPs consisted of N, P, and L proteins but lacked detectable M and G (see Figure 2C). We also confirmed by plaque assay that the purified RNPs did not contain infectious virus particles. To quantify gene expression from transfected RNPs or plasmids DNA encoding renilla luciferase (phRL-CMV, Promega), CHO cells in a 96-well plate (~20,000 cells per well) were transfected with 9 ng of total RNP protein or 40 ng of plasmid DNA using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions, except that the amount of transfection reagent was reduced to 0.5 µl per well. Samples were maintained at the indicated temperature during the transfection reaction, and luminescence emitted from the transfected cells was quantified 5 h post-transfection as described for the VSV REN-P attachment experiments.

UV irradiation of virus particles

Purified VSV REN-P particles were diluted to 1×10^6 pfu µl$^{-1}$ in NTE (pH 7.4), and the diluted virions were exposed to UV light at a dose of 41 ergs mm$^{-2}$ s$^{-1}$ for the indicated length of time using a UV germicidal lamp in a SterilGARD III Advance biosafety hood (The Baker Company; Sanford, ME).
Fluorescent dye conjugation to VSV particles

Alexa Fluor 647 succinimidyl ester dye molecules (Invitrogen) were conjugated to G proteins on purified VSV and VSV eGFP-P particles as previously described (14). Plaque assays of labeled particles showed that dye conjugation did not reduce virus infectivity.

Visual assays for steps of VSV entry

Internalization

Cells grown on 12 mm coverslips (#1.5, Electron Microscopy Sciences; Hatfield, PA) were incubated with Alexa 647 VSV (MOI 500) for the indicated time intervals, and samples were fixed in 2% PFA for 15 min. at RT. This dose of virus permitted unambiguous counting of single particles and exclusion of endosomal virus signals that corresponded to more than one particle. To visualize the cellular plasma membrane, samples were incubated with 1 μg ml⁻¹ Alexa Fluor 594 wheat germ agglutinin (WGA) (Invitrogen) for 20 min. at RT. External virus particles were fluorescently labeled by incubating samples with IE-2, a monoclonal antibody specific for VSV G (62), followed by Alexa 488- (VSV) and Alexa 594-conjugated (VSV eGFP-P) goat anti-mouse secondary antibodies (Invitrogen). All antibody incubation steps were conducted for 30 min. at RT in the absence of detergent to exclusively label surface-bound virions. Transferrin (Tf) uptake was performed by incubating cells with 40 μg ml⁻¹ of Alexa Fluor 488 human Tf (Invitrogen) in Ham’s F-12 media lacking serum. Surface-bound Tf was removed by washing cells for 2 min. at 37°C in pH 4.6 citrate buffer (25 mM citric acid, 25 mM sodium citrate, 280 mM sucrose, and 0.01 mM deferoxamine mesylate), followed by two rinses in PBS (pH 7.4) (20). Acid-washed cells were then fixed and incubated with WGA as above.
Coverslips were mounted onto glass coverslips using ProLong Gold Antifade Reagent (Invitrogen). Cells grown on 12 mm coverslips (#1.5, Electron Microscopy Sciences) were incubated with Alexa 647-labeled VSV eGFP-P (MOI 500) for the indicated time intervals, and samples were fixed with 4% PFA for 15 min. at RT. Extracellular virions were detected as in the virus internalization assay, except that goat anti-mouse secondary antibodies labeled with Alexa 594 (Invitrogen) were used. Viral N protein was detected in the presence of detergent using the monoclonal antibody 10G4 (34) and goat anti-mouse secondary antibodies labeled with Alexa 594 (Invitrogen). Coverslips were mounted onto glass slides using 0.1 M phosphate buffer, 90% v/v glycerol, and 3% 1,4-diazobicyclo-[2.2.2]-octane (DABCO; Sigma-Aldrich) and sealed with nail polish. Samples were imaged prior to dehydration of the mounting buffer.

Image acquisition and processing

VSV and Tf internalization samples were analyzed by acquiring images spaced at 0.5 μm intervals encompassing the entire cell volume using a spinning confocal microscope (15) controlled by Slidebook 4.2 (Intelligent Imaging Innovations; Denver, CO). Image planes were viewed using Slidebook, and the number of virus particles per cell was manually counted. Figure images were prepared using Slidebook.
RESULTS

COPI function is required for VSV replication.

We genetically perturbed COPI function and quantified the effects on VSV replication. We transfected HeLa cells with siRNA pools targeting each coatomer subunit and inoculated the cells 48 h later with a recombinant VSV encoding eGFP (VSV-eGFP). Seven hours post-inoculation (p.i.), we acquired images of the cell populations and used automated image analysis to quantify the number of total and eGFP-positive cells in each sample. RNAs targeting 7 of 9 COPI subunits reduced the percentage of eGFP-positive cells by 50-90% compared to control samples (Figure 1A, B), while only RNAs targeting α-COP significantly reduced cell viability (Figure 1B). Results of an independent screen confirmed that each siRNA pool contained at least one individual duplex that recapitulated the original screen results (Table 1.). Since eGFP expression at 7 h p.i. does not depend on virus assembly or release, we conclude that COPI function is critical for a step(s) of VSV replication that precedes progeny virion assembly.

To independently corroborate the siRNA results, we used a Chinese hamster ovary (CHO) cell line (IdlF) with a temperature-sensitive lesion in ε-COP (27). This cell line has the added advantage of allowing us to examine how a more rapid loss of COPI function affects VSV replication. As expected, incubation of IdlF cells at the nonpermissive temperature (40°C) depleted ε-COP within 12h (Figure 2A). We quantified the efficiency of VSV-eGFP infection in CHO and IdlF cells by flow cytometry. VSV-eGFP infected and expressed eGFP to comparable levels in IdlF cells incubated at 34°C (Figure 2B). In contrast, preincubation of IdlF cells at 40°C decreased cell infection by ~40% and reduced the mean fluorescence intensity of the infected cell population by 85% relative to wt cell samples (Figure 2B). These data confirm our results
from the HeLa cell screen and show that COPI function is critical for an early stage(s) of the viral replication cycle.

To bypass virus entry and quantify the effect of ε-COP depletion on gene expression alone, we transfected purified RNPs (Figure 2C) into CHO cells and measured the luminescence generated from a virally encoded fusion of renilla luciferase to VSV P (see Figure 3 for details). The endpoint luminescence in RNP transfected cells scaled in proportion to the amount of input RNPs, showing that this approach quantitatively measures viral gene expression separately from virus entry (Figure 2C). Inactivation of coatamer function by incubation of ldlF cells for 12 h at the nonpermissive temperature decreased viral gene expression 2-fold relative to that in wt cells, while gene expression was equally efficient in CHO and ldlF cells that were maintained at 34°C (Figure 2D). Coatamer inactivation did not alter the capacity of ldlF cells to express renilla luciferase from transfected plasmid DNA, indicating that the cells were competent for transfection and protein synthesis (Figure 2D). These results show that coatamer inactivation inhibits VSV gene expression. However, this moderate effect on gene expression does not account for the overall decrease in eGFP signal observed in the flow cytometry assay, suggesting ε-COP depletion perturbs virus entry.

A virion-based enzymatic reporter of virus particle number.

To test the hypothesis that ε-COP depletion inhibits VSV entry, we developed quantitative, enzyme-based assays that measure viral attachment and cytosolic RNP translocation independent of downstream gene expression. We generated a recombinant virus (VSV REN-P) that encodes an amino-terminal fusion of renilla luciferase to the VSV P (Figure 3). VSV REN-P replicates with similar kinetics to wt VSV (Figure 3A) but has a smaller plaque size and releases
fewer infectious particles (Figure 3A). An analysis of virion protein composition showed that purified VSV REN-P virions contain normal quantities of each viral protein, including the REN-P fusion protein (Figure 3B). To determine whether the REN-P protein is enzymatically active, we lysed purified virions in the presence of renilla luciferase substrate. We detected luminescence that increased in proportion to the quantity of virus particles over a 500-fold range (Figure 3C). Thus, the REN-P fusion protein is a functional luciferase enzyme that allows direct quantification of virus particle number.

ε-COP depletion reduces the efficiency of VSV attachment.

We adapted the method of particle quantification to create an enzymatic assay for viral attachment. Cells were exposed to VSV REN-P for 1 h at 4°C, and unbound virus was removed by washing. The virus-cell complexes were lysed in the presence of substrate, and luminescence was quantified. We found that 0.5-5% of input virions bound to cells at 4°C, and the quantity of attached virions increased proportionally with the amount of input virus (Figure 3D). Such low level, non-saturatable binding is in good agreement with measurements obtained using radiolabeled virus (data not shown) (41, 42). Virus attachment was G protein dependent, as pretreatment of virus with a neutralizing monoclonal antibody (IE2) directed against VSV G (62) or proteolytic removal of G protein from particles reduced the cell-associated enzyme activity by >80% (Figure 3E). Following ε-COP depletion, virus binding to ldlF cells was diminished by 40% (Figure 3F). In contrast, similar numbers of VSV REN-P particles bound to wt and ldlF cells maintained at 34°C. Thus, ε-COP depletion reduces the efficiency of VSV attachment.

Depletion of ε-COP inhibits a post-attachment step of VSV entry.
The moderate defect in VSV attachment suggested that a downstream step of entry may also be compromised by coatamer inactivation. Thus, we used VSV REN-P to develop a real-time assay that detects the final step of virus entry, cytosolic RNP release. We treated CHO cells with puromycin to prevent translation of newly-transcribed REN-P mRNAs and loaded the cells with a membrane-permeable substrate for renilla luciferase (EnduRen). Inoculation of cells with VSV REN-P (MOI 25) led to an 8-10 fold increase in the cell-associated luminescence by 120 min. p.i. (Figure 4A, B). This increase in luminescence depended on viral membrane fusion and access of RNPs to EnduRen in the cell cytosol, since preventing endosome acidification with NH4Cl or Bafilomycin A1, or preincubation of virions with a neutralizing antibody, resulted in background levels of luminescence (Figure 4A, B). To confirm that the enzyme activity was not simply a result of new viral protein synthesis, we irradiated purified VSV REN-P with UV light to block transcription of the viral genome. A dose of 820 ergs mm⁻², which inhibits synthesis of all viral mRNAs (5, 66), did not reduce the luciferase activity of the REN-P protein or the luminescence increase observed in puromycin-treated cells. However, under conditions permissive for viral gene expression (i.e. in the absence of puromycin), this dose of irradiation decreased luminescence by >95% compared to samples infected with non-irradiated virions (Figure 4C). These data confirm that the measured luminescence in puromycin-treated cells does not depend upon new viral gene expression. Thus, VSV REN-P permits a quantitative, kinetic analysis of RNP release that is not influenced by the significantly downstream steps of viral gene expression.

Next, we used the enzymatic RNP release assay to quantify the effect of coatamer inactivation on the overall efficiency of VSV entry. We found that ε-COP depletion in ldlF cells reduced VSV REN-P entry to the limit of detection (Figure 4D, E). Importantly, the low signal
detected in the ldlF cells was not due to a decreased capacity of the cells to convert EnduRen into an active substrate for the REN-P enzyme (Figure 4F). Thus, these observations show that ε-COP depletion dramatically inhibits VSV entry during or before the step of RNP release from endosomal compartments.

Coatomer inactivation inhibits VSV internalization.

To directly measure the effect of coatomer inactivation on viral endocytosis, we quantified the rate of VSV internalization at the level of single cells and individual virus particles. We exposed cells to Alexa 647-labeled VSV particles, and following cell fixation, we immunostained the surface-bound particles using a spectrally separable fluorophore. We then acquired images that spanned the volume of individual cells (Figure 5A) and counted the number of internal particles in each cell (Figure 5B). Depletion of ε-COP levels in ldlF cells decreased the rate and overall efficiency of virus internalization (Figure 5A, B). Moreover, ldlF cells consistently contained fewer attached particles at early times and a higher ratio of external to internal particles than wt cells at all time points (Figure 5A). These data confirm that ε-COP depletion in ldlF cells reduces the efficiency of VSV attachment and reveal a separate defect in virus internalization.

To determine if inhibition of coatomer function decreases the uptake of clathrin-dependent cargos other than VSV, we incubated wt and ldlF cells for 12 h at 40°C and assessed the capacity of the cells to uptake fluorescent transferrin (Tf). Indeed, Tf uptake was severely compromised in ldlF cells, while the wt cells efficiently internalized ligand (Figure 5C). These observations show that coatomer inactivation in ldlF cells decreases the uptake efficiency of two different clathrin-dependent cargos.
VSV RNP release does not require COPI function.

To determine whether the few virus particles endocytosed by ldIF cells could release their RNPs from endosomes, we developed a visual assay using VSV particles in which the RNP core was tagged with eGFP (VSV eGFP-P) (55) and the G proteins were labeled with Alexa Fluor 647 (A647-G). Images of the dual-labeled particles on glass showed that approximately 90% of the particles contained both fluorophores (Figure 6A, G).

To assay for RNP release from the dual-labeled particles, we induced the synchronous uptake of virus prebound at 4°C and measured the fraction of particles that had undergone RNP release (as evident by the separation of the G-associated AF647 and RNP-core associated eGFP fluorescence) with respect to time. We found that RNP translocation was rapid and efficient in wt CHO cells and ldIF cells depleted of ε-COP, as the number of intracellular A647-G spots that were eGFP-positive rapidly decreased from >90% at the time of temperature shift to <20% by 30 min. in both cellular contexts (Figure 6B, C, F, and G). As expected, separation of the eGFP signal did not occur in cells pretreated with NH₄Cl (Figure 6E, G). Detection of the viral nucleocapsid protein by IF microscopy also revealed a loss of P that occurred during RNP release, as most cytosolic RNPs lacked detectable eGFP signal (Figure 6D). Thus, our combined results demonstrate that ε-COP depletion in ldIF cells primarily inhibits the attachment and internalization steps of VSV entry and not viral membrane fusion or RNP release.

We reasoned that the location of the A647-G spots might correspond to the endosomal location of RNP release. Therefore, we co-stained ldIF cells with an antibody against a marker of early endosomes, early endosomal antigen 1 (EEA1). As early as 10 min. after the temperature
shift, we observed the colocalization of A647-G spots lacking eGFP-P with EEA1 (Figure 6H), demonstrating that viral fusion and RNP release can occur from an early endosome.

Prolonged chemical inhibition of coatamer function impairs VSV entry.

Given the effect of e-COP depletion on cellular endocytosis, we sought to test whether a short-term chemical inhibition of COPI function results in a similar phenotype. Brefeldin A (BFA), a small molecule inhibitor of COPI-dependent membrane transport, prevents the Arf1-dependent recruitment of coatamer to cellular membranes (54) and rapidly induces fragmentation of the Golgi apparatus. BFA is known to inhibit VSV RNA synthesis (28), but the effect of BFA on VSV entry was unknown. Consistent with previous results, we found that BFA treatment of CHO cells for 1 h or 12 h reduced gene expression from transfected VSV REN-P RNPs by 70% or 95%, respectively (Figure 7A). Treatment of CHO cells for 1 h with BFA did not impair VSV adsorption (data not shown) or RNP release (Figure 7B). However, incubation of cells with BFA for 12 h inhibited VSV entry and RNP release by 80% (Figure 7B). Prolonged treatment of cells with BFA also blocked Tf internalization, while shorter durations of drug treatment decreased Tf uptake to a lesser extent (Figure 7C). As expected, this short-term BFA treatment caused Golgi fragmentation (Figure 7C). Together, our data show that prolonged chemical and genetic inhibition of coatamer function prevents efficient VSV entry and Tf uptake. However, short-term disruption of COPI-dependent membrane transport has little to no effect on the endocytic transport of these cargos, indicating that the long-term effects of coatamer inactivation are likely indirect.
DISCUSSION

In the present study, we examined how inhibition of COPI-dependent membrane transport impedes the early stages of VSV infection. We show that genetic depletion of ε-COP separately impaired virus endocytosis and gene expression without inhibiting RNP release by internalized particles. However, chemical inactivation of coatamer function showed that VSV entry was only affected by long-term treatment of cells with BFA. Thus, our observations support the following conclusions: (i) COPI function is critical for efficient VSV internalization and gene expression; (ii) COPI activity is not required for VSV membrane fusion or RNP release; and (iii) Long-term COPI inactivation perturbs cellular membrane traffic and thereby indirectly reduces the efficiency of VSV attachment and endocytosis.

Genetic depletion of ε-COP in ldF cells primarily inhibited VSV endocytosis. Given that the downstream steps of viral membrane fusion and RNP release were not impaired in ldF cells, we conclude that the magnitude of this endocytic defect is sufficient to account for the overall reduction in virus entry that we observed using the enzymatic assay for RNP release. We further show that this endocytic defect was not unique to VSV, as Tf uptake was also reduced by ε-COP depletion in ldF cells. This observation agrees with data from earlier studies that reported a partial defect in Tf uptake in human cells treated with siRNAs against β-COP for 48 h (52) and in ldF cells pre-incubated at 40°C for 8 h (16). The latter study also demonstrated that ε-COP depletion prevents the delivery of another clathrin-dependent cargo, Semliki Forest virus (SFV), to acidified endosomes (16). This SFV entry block was attributed to a defect in endosomal sorting of the virus particles. However, it is plausible that SFV particles could not be detected in acidified endosomes because they were inefficiently internalized from the cell surface.
Since the COPI machinery does not directly participate in the clathrin-dependent uptake of VSV or Tf, our findings suggest that coatomer inactivation indirectly perturbs clathrin-dependent endocytosis or ligand binding to the cell surface. To our knowledge, coatomer depletion has not been shown to directly affect the clathrin endocytic process. However, low density lipoprotein receptors (LDLR) are rapidly depleted from the surface of ldlF cells upon ε-COP depletion (27), which implies that the surface levels of other receptor proteins may also change in ldlF cells. In case of transferrin receptors (TfR), ε-COP depletion for 8 h did not induce TfR degradation or alter the steady state ratio of surface to internal receptor (16). However, we cannot exclude the possibility that fewer TfRs remained on the surface of ldlF cells after the longer duration of ε-COP depletion used here.

In the case of VSV, we found that inhibiting COPI function reduced particle attachment to cells by ~30%. The magnitude of this defect was not sufficient to account for the overall reduction in virus internalization, indicating that ε-COP depletion reduces both virus attachment and internalization. The effect of coatomer inactivation on VSV adsorption likely reflects changes in the abundance of proteins, lipids, or their modification status at the plasma membrane of ldlF cells. Considering that electrostatic interactions are thought to be sufficient for VSV attachment (4, 10), it is difficult to pinpoint which alterations in cell surface composition might impair virus binding. A recent study demonstrated that RNAi-mediated depletion of γ-COP in HeLa cells partially redistributed cholesterol and GM1 sphingolipids from the plasma membrane to an intracellular compartment (45). Addition of cholesterol and GM1 to the coatomer depleted cells in trans modestly increased plasma membrane ruffling induced by Salmonella bacteria and the susceptibility of the cells to VSV infection (45), indicating that alterations to lipid
localization directly or indirectly contribute to the decreased efficiency of VSV infection in cells with reduced coatamer levels.

The effects we observed on VSV attachment and endocytosis resulted from prolonged inhibition of coatamer function. We base this conclusion on the observations that pre-treatment of cells with BFA for 1 h did not inhibit VSV attachment or entry and likewise had little effect on Tf uptake, while BFA treatment for 12 h reduced the efficiency of VSV entry by 80% and dramatically inhibited Tf endocytosis. Since BFA induces Golgi fragmentation within minutes and clearly caused the redistribution of GM130 by 1 h in CHO cells, our data indicate that VSV entry does not require COPI function directly.

There are 2 models of VSV membrane fusion and RNP release. In one model, VSV virions fuse with the limiting membrane of an EE, which directly releases the RNP into the cell cytosol. According to the second model, VSV particles fuse with vesicles inside multivesicular bodies (MVBs), an endosomal intermediate between EEs and LEs (32). Release of the entrapped RNPs then requires delivery of the internal vesicles into a LE and vesicle backfusion with the LE limiting membrane (32). Because coatamer inactivation in ldlF cells inhibits formation of intralumenal vesicles (21) and the efficiency of endocytic cargo accumulation in LEs and lysosomes (16, 21), there should be a specific defect in VSV RNP release. Our data are not consistent with this second route of entry, since most VSV particles pre-bound to wt or ldlF cells completed RNP release 10 min. after warming of the virus-cell complexes. Rather, the rapid kinetics of RNP release that we observed agrees with previous reports showing that VSV particles reach and penetrate acidic endosomal compartments within 5 min. of uptake (29, 43, 44). The kinetics of this process is also consistent with release of RNPs from EEs, as is the
detection of G protein in EEs of ldlF cells that lacked detectable RNP signal. Thus, our data provide further support for the conventional model of VSV entry from EEs.

Genetic and chemical inactivation of coatomer function decreased viral gene expression. Given that ε-COP depletion in ldlF cells does not inhibit protein translation (27), and BFA treatment does not significantly affect VSV protein synthesis (28), the block to viral gene expression likely occurs at the level of viral RNA synthesis. Our results agree with the prior finding that BFA inhibited VSV RNA synthesis when cells were treated with the compound 2 or 4 hours after exposure of cells to virus (28). Under these conditions, BFA decreased the abundance of viral transcripts and genomic replication products, so it is unclear whether BFA treatment specifically impaired one or both of these RNA synthetic processes. Although we cannot exclude the possibility that BFA may directly inhibit RNA synthesis by the viral RdRp, the similar effects of BFA treatment and ε-COP depletion on VSV gene expression suggest that their inhibitory effect results from changes to cellular factors that modulate viral RNA synthesis.

Positive-strand RNA viruses are well known to replicate on intracellular membrane-bound organelles, including vesicles generated by the COPI system (13, 19). In contrast, the replication machinery of VSV does not appear to localize to a membranous compartment. Rather, the input RNP cores can synthesize RNA throughout the cytoplasm, and following protein synthesis, the RNA synthetic machinery localizes to cytosolic inclusions that are the sites of viral transcription (25). Although the inclusions can become loosely surrounded by membrane bilayers, this association is not required for viral RNA synthesis, as it occurs late in the infection cycle (>8 h p.i.) (25). This apparent membrane wrapping of VSV inclusions could result from displacement of existing cellular membranes (e.g. ER membranes) as the inclusions expand or from an active cellular process triggered by the virus (e.g. autophagy). Indeed, VSV infection...
can induce autophagy in mammalian and *D. melanogaster* cells (33, 56), and coatomer activity was recently shown to be important for autophagosome maturation in mammalian cells (52). However, the autophagic response induced by VSV apparently modulates viral replication differently in the two systems (30, 56). Thus, it remains uncertain how coatomer inactivation perturbs VSV gene expression and whether alterations to cellular autophagy contribute to the inhibitory phenotype.

At the outset of our study, COP-I coatomer was known to play a critical role in biosynthetic membrane transport and was implicated in endocytic transport. With such central roles for COPI in directing membrane traffic, it is perhaps unsurprising that many RNAi-based screens designed to identify host susceptibility factors for pathogenic microbes have included the coatomer complex as a hit. Here we demonstrate that COPI inactivation reduces viral attachment and internalization as a secondary consequence of changes to the plasma membrane. The fact that release of the viral RNP core into cells is unaffected by coatomer depletion shows that COPI-dependent endocytic transport is not required for VSV infection. Resolving the potential effects of coatomer inactivation on VSV endocytosis and RNP release required the development of quantitative assays that directly visualize the progression of individual virions through the endocytic pathway. These assays will facilitate further analysis of VSV entry, and importantly, the entry of VSV particles pseudotyped with other viral envelope proteins. Due to the complex phenotypes caused by depletion of cellular membrane transport factors, we anticipate that similar analyses will be critical for discerning how pathogens exploit coatomer and other such factors to invade target cells.

Meyer. 2010. Genome-wide RNAi screen identifies human host factors crucial for

32. Le Blanc, I., P. P. Luyet, V. Pons, C. Ferguson, N. Emans, A. Petiot, N. Mayran, N.

Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science
315:1398-401.

34. Lefrancios, L., and D. S. Lyles. 1982. The interaction of antibody with the major
surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes

genome-wide genetic screen for host factors required for hepatitis C virus propagation.

36. Lippincott-Schwartz, J., L. Yuan, C. Tipper, M. Amherdt, L. Orci, and R. D.
Klausner. 1991. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a
general mechanism for regulating organelle structure and membrane traffic. Cell 67:601-
16.

45. Misselwitz, B., S. Dilling, P. Vonaesch, R. Sacher, B. Snijder, M. Schlumberger, S.
 Salmonella invasion shows role of COPI in membrane targeting of cholesterol and

 Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured

 selection of mutants of vesicular stomatitis virus by cultured cells of Drosophila

 protein in maintaining the viral nucleocapsid in the condensed form found in native

 Functional genomic analysis of phagocytosis and identification of a Drosophila receptor

ACKNOWLEDGMENTS

This work was supported by NIH grant AI081842 to Sean P.J. Whelan.
Figure 1. siRNAs targeting COPI coatomer subunits inhibit VSV replication.

(A) Images of VSV replication in siRNA-treated cells. HeLa cells were treated with siRNAs and infected with VSV-eGFP as described in the materials and methods. Images of cells treated with the indicated siRNAs were acquired using an automated epifluorescence microscope, and overlays of the nuclear Hoescht stain (blue) and eGFP (green) channels are shown. Knockdown of eIF1-alpha reproducibly decreased the percentage of infected cells by ~50% and served as a positive control in the screen. BC- no siRNA buffer control. NT- non-targeting siRNA.

(B) Effect of siRNAs targeting subunits of the COPI coatomer complex on VSV infection and cell viability. Automated image analysis was used to count the total number of nuclei and eGFP-positive cells in each sample. The plotted values were calculated as described in the materials and methods and expressed as a percentage of the BC samples.

Figure 2. ε-COP depletion inhibits the early stages of VSV replication.

(A) Western blot analysis of ε-COP levels in wt and ldIF cells. ε-COP was detected using polyclonal antisera following SDS-PAGE of 10 μg of a total cell lysate prepared from wt or ldIF cells after shifting the cells to 40°C for the indicated time interval.

(B) Effect of ε-COP depletion on VSV-eGFP entry and gene expression. CHO and ldIF cells were incubated for 12 h at 34°C or 40°C and inoculated with VSV-eGFP (MOI 1). After 7 h at the indicated temperature, the percentage of eGFP-positive cells (black) and the mean eGFP fluorescence intensity (gray) in each cell population was quantified by flow cytometry. Data are expressed relative to those obtained in CHO cells at 34°C (set to 100%). Values are the mean ± SD from triplicate samples in a single experiment.
(C) Assay for gene expression from transfected RNPs. Left, Coomassie-stained SDS-PAGE gel of RNPs isolated from VSV REN-P virions. Right, Gene expression from transfected RNPs. The indicated quantity of RNPs was complexed with Lipofectamine 2000 (+lipid) or left untreated (no lipid). CHO cells were inoculated with the RNP solutions, and the cells were maintained at 37°C. At 5 h post-transfection, luminescence was quantified as described in the methods. Values are the mean ± SD of duplicate samples in a single representative experiment.

(D) Effect of ε-COP depletion on gene expression from transfected RNPs. CHO and ldlF cells were incubated at 40°C for 0 h (34°C) or 12 h and transfected with 9 ng of VSV REN-P RNPs (left panel) or 40 ng of plasmid DNA encoding renilla luciferase (right panel). At 5 h post-transfection, cells were lysed in the presence of renilla luciferase substrate, and luminescence was quantified immediately after lysis. Values are the mean ± SD from a single representative experiment (RNPs) or from duplicate experiments (DNA). The raw values obtained in RNP-transfected cells were similar to those shown in panel C for cells transfected with 9 ng of RNPs.

Figure 3. VSV REN-P: an enzymatic reporter of virus particle number.

(A) Biological properties of VSV REN-P. Top left, schematic of the VSV REN-P genome. The 5 major open reading frames are delimited by vertical lines and labeled with capital letters that correspond to the gene product. The noncoding leader (Le) and trailer (Tr) regions flank the coding portions of the genome. Lower left, plaque morphologies of VSV and VSV REN-P at 48 h p.i. of Vero cells. Right, single-step growth kinetics of VSV and VSV REN-P. BHK-21 cells were infected at an MOI of 3, and the titer of virus released from the cells at each time point was measured by plaque assay on Vero cells. Data points are the average ± SD of duplicate samples from a single representative experiment.

(B) Coomassie-stained SDS-PAGE gel of purified VSV and VSV REN-P particles.
(C) Luciferase activity associated with purified VSV REN-P particles. The indicated quantity of virus was lysed in the presence of renilla luciferase substrate, and luminescence was measured immediately. Data points are the mean ± the SD of 2 independent experiments.

(D) Virus attachment. CHO cells were exposed to the indicated quantity of VSV REN-P at 4°C for 1 h, and unbound virus was removed by washing. Attached virions were lysed in the presence of substrate, and luminescence was quantified immediately. Data points are the mean ± the SD of 2 experiments.

(E) Effect of virus neutralization and G protein cleavage on VSV REN-P attachment. Virions were treated with a neutralizing antibody (IE-2) directed against G protein or proteinase K (proK) prior to incubation with cells as in D. The mean ± SD of triplicate samples in a single representative experiment is shown.

(F) Effect of e-COP depletion on VSV attachment. CHO and ldlF cells were incubated for 0 or 12 h at 40°C, cells were rapidly shifted to 4°C and inoculated with VSV REN-P (MOI 250). Following a 1 h adsorption at 4°C, unbound virus was removed by washing, and the amount of bound virus was measured as in (D). The mean ± the SD of 4 independent experiments are plotted as the % of RLUs observed in ldlF cells divided by that observed in wt CHO cells under the same conditions.

Figure 4. Enzymatic detection of release of the RNP core.

(A) Enzymatic detection of VSV RNP release. CHO cells were preloaded with EnduRen for 1.5 h at 37°C and treated with 50 ug/mL puromycin (●) or 20 mM NH4Cl (○) for the final hour of substrate loading. Cells were inoculated with VSV REN-P (MOI 25), and the luminescence
emitted from live cells was measured at the indicated intervals. Values are the average ± SD of triplicate samples in a single experiment.

(B) Effect of virus neutralization or endosome acidification on VSV REN-P RNP release. CHO cells were loaded with EnduRen for 1.5 h at 37°C and treated with 50 ug/mL puromycin for the final hour of substrate loading. Thirty minutes prior to virus addition, cells were exposed to 20 mM NH₄Cl or 100 nM BAF or left untreated. Cells were inoculated with VSV REN-P (MOI 25) or virus that had been preincubated with a neutralizing antibody against VSV G for 1 h at 37°C (anti-G Ab). The luminescence emitted from live cells in duplicate samples was quantified at 5 min. and 120 min. after virus addition in each experiment. The fold increase in relative light units from 5 min. to 120 min. was calculated and expressed as a mean ± SD from samples in six experiments (untreated), five experiments (NH₄Cl), or single experiments (BAF, anti-G Ab).

(C) Effect of UV irradiation on viral gene expression and RNP release. Purified VSV REN-P particles were exposed to UV light at 41 ergs mm⁻² s⁻¹ for the indicated time intervals. CHO cells were loaded with EnduRen and inoculated with virus at a pre-irradiation MOI of 25. Luminescence was measured following 3 h at 37°C in the presence (●) or absence (○) of 50 ug/mL puromycin. As a control for UV-mediated damage of the REN-P enzyme, the enzyme activity of particles irradiated for the same time intervals was measured directly following lysis and exposure of the particles to substrate (open triangles). Results for irradiated samples are expressed as a percentage of unirradiated samples tested under the same conditions. Plotted values are the average ± the SD from 2 experiments.

(D) Effect of e-COP depletion on VSV RNP release. CHO (●) and ldIF (○) cells were incubated at 40°C for 10.5 h and loaded with EnduRen and 50 ug/mL puromycin for 1.5 h and 1 h, respectively. Cells were inoculated with VSV REN-P (MOI 25), and luminescence was
measured at the indicated times p.i. The mean ± the SD of triplicate samples in a single experiment is shown. (▼) Luminescence of cells alone loaded with substrate.

(E) Quantitation of RNP complex release. Triplicate samples of CHO and ldIF cells were incubated for 0 or 10.5 h at 40°C and treated as in C. The mean luminescence in ldIF cells at 90 min. p.i. was expressed as a percentage of that observed in CHO cells under similar conditions, and the plot shows the average percentage ± SD from 3 independent experiments.

(F) EnduRen activation efficiency. CHO and ldIF cells were incubated for 10.5 h at 40°C and loaded with EnduRen for 1.5 h. The capacity of cells to convert EnduRen to a substrate for the REN-P enzyme was evaluated by lysing the loaded cells in the presence of 1x10⁶ pfu of VSV REN-P. Luminescence was plotted as the mean ± the SD from 2 experiments.

Figure 5. α-COP depletion inhibits VSV internalization.

(A) Antibody accessibility assay for quantifying internalized VSV particles. CHO (left) and ldIF cells (right) were incubated for 12 h at 40°C prior to inoculation with Alexa 647 VSV particles (red; MOI 500). Cells were fixed at 30 min. p.i., and the glycans on the cell surface were labeled with wheat germ agglutinin (WGA; grey). Surface-bound virions (yellow) were detected with an antibody specific for VSV G and an Alexa Fluor 488 labeled secondary antibody. Image sections encompassing the entire cell volume were acquired every 0.5 μm by confocal microscopy. Top panels, single planes acquired from the midplane of individual CHO and ldIF cells. Panels to the left and above each primary image show a 3X interpolation of the cell volume in the X or Y dimension, respectively. Lower panels, projected image of all focal planes from the cells shown above. Yellow or red arrowheads indicate external or internal particles. The same particles are
highlighted in the upper and lower panels. The dashed white line indicates the outermost cell boundary.

(B) Kinetics of VSV internalization in CHO and ldlF cells. Cells were treated as in A. and fixed at the indicated time points. The number of internalized particles per cell was measured for 20 cells per time point and averaged. The data points are means of the average counts ± SD from 2 experiments.

(C) Effect of e-COP depletion on transferrin uptake. CHO and ldlF cells were incubated for 12 h at 40°C and pulsed with Alexa 488 transferrin for 5 min. Surface-bound transferrin was removed by a brief acid wash, and the cell surface stained with WGA prior to image acquisition. Images were acquired as in A., and a projected image of all the planes is shown for the transferrin signal alone. The dashed white line indicates the outer cell boundary.

Figure 6. VSV RNP release does not require COPI function.

(A) Images of VSV eGFP-P virions labeled with Alexa Fluor 647 (A647-G). Particles were nonspecifically adsorbed to a glass coverslip, and images were acquired using a spinning disk confocal microscope. Images of the eGFP-P (left) and Alexa dye (middle) channels are shown next to a channel overlay (right).

(B) Visualization of attached VSV eGFP-P particles. CHO cells were incubated with dual-labeled particles (MOI 500) for 1 h at 4°C. Unbound virions were removed by washing, and following fixation, the extracellular particles were visualized by IF detection of anti-VSV G primary antibodies with an Alexa 594-labeled secondary antibody (blue). Optical sections of cells were acquired by confocal microscopy as in Figure 5A, and a projected image of planes encompassing a single cell is shown on the left. The white dashed line delimits the outer cell
boundary. White arrowheads highlight external, triple-colored virus particles. Right panels, expanded single-channel views of the boxed region at left.

(C) Visual detection of VSV eGFP-P uncoating. CHO cells were incubated at 40°C for 12 h, and virus entry was synchronized by first binding dual-labeled particles to cells at 4°C (see B.). Virion uptake was activated by rapidly shifting the virus-cell complexes to 40°C, and samples were fixed after 30 min. Surface-bound virions were detected by IF, and images were acquired and presented as in B. Red arrowheads, internalized particles that have released their RNPs. Yellow arrowheads, internalized virions that contain RNPs.

(D) Location of VSV RNPs after particle entry. Dual-colored particles were incubated with cells for 20 min. as described in C. N protein was detected by IF, and images were acquired and displayed as in B. Arrowheads indicate spots of Alexa 647 G that do not contain N protein (red), spots of N protein that lack G (blue), and internal particles that still contain an RNP (yellow).

(E) Effect of NH₄Cl on particle uncoating. CHO cells were incubated for 12 h at 40°C, and NH₄Cl was added to 20 mM at 11.5 h. Dual-colored particles were allowed to synchronously enter cells for 30 min. (see C.) in the presence of NH₄Cl. Surface-bound virions were detected by IF, and 3D images were acquired as in B. Yellow arrowheads, internal particles containing a RNP.

(F) VSV RNP release in IdIF cells. Cells were incubated at 40°C for 12 h and allowed to synchronously uptake dual-colored particles for 30 min. (see C.). Cells were inoculated with 4-fold more virus than cells in B. to ensure that a similar number of particles were taken into both cell types. Extracellular particles were detected by IF, and images were acquired as in B. Arrowheads highlight uncoated (red), intact (yellow), and extracellular particles (white).
(G) Kinetics of VSV RNP release. CHO and ldlF cells were incubated at 40°C for 12 h. Dual-colored particles were allowed to synchronously enter cells for the indicated times in the presence (see E.) or absence of NH₄Cl. ldlF cells were inoculated with 4-fold more virus than CHO cells to ensure similar numbers of internalized particles per cell in both cell types. Extracellular virions were detected by IF, and images were acquired as described in B. The percentage of intracellular particles containing eGFP-P was measured for at least 12 individual cells per time point, and the percentages at each time point were averaged. Data points are the mean ± the SD of the average percentages from 2 experiments.

(H) Evidence for RNP release from early endosomes. Dual-colored particles were allowed to synchronously enter ldlF cells for 10 min. at 40°C. Early endosomes were detected by IF using antibodies against EEA1 (blue). 3D image sets were acquired as in B., and a single focal plane from an individual cell is shown. Red arrowheads indicate the position of Alexa 647 spots that colocalize with EEA1 and do not contain detectable eGFP-P. Images to the left and top of the main panel show 3X interpolated images of the cell volume in the x and y dimensions, respectively.

Figure 7. Prolonged treatment of cells with brefeldin A inhibits VSV entry.

(A) Effect of BFA treatment on VSV gene expression. CHO cells were treated with ethanol carrier or 5 ug/mL BFA for 1 h or 12 h. Cells were transfected with VSV REN-P RNPs in the presence of compound, and luminescence was quantified after incubation of the samples at 37°C for 5 h. Values are the mean ± SD from two independent experiments and are expressed as a percentage of the carrier control samples.
(B) Effect of BFA treatment on VSV RNP release. Left, CHO cells were treated with ethanol carrier or 5 ug/mL BFA for 1 h or 12 h at 37°C. Treated cells were incubated with EnduRen for 1.5 h and puromycin for 1 h prior to addition of virus. Cells were inoculated with VSV REN-P (MOI 25) in the presence of compound, and luminescence was quantified at 90 min. p.i. Data points are the mean ± SD from two independent experiments and are expressed as a percentage of the carrier control samples.

(C) Effect of BFA on Tf uptake. CHO cells were treated with ethanol carrier or 5 ug/mL BFA for 1 h or 12 h at 37°C. Treated cells were incubated with 40 ug/mL Alexa 488 human Tf (green) in the presence of compound for 5 min. at 37°C. Extracellular Tf was removed by acid wash, and cells were fixed and stained for GM130. Dotted lines in the lower panels indicate the cell periphery.
Table 1. Effects of individual siRNAs on cell viability and VSV infection.

<table>
<thead>
<tr>
<th>Targeted gene</th>
<th>% total cells ¶</th>
<th>% infected cells ¶</th>
<th>Dharmaco ID#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-COP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siRNA 1</td>
<td>112+/-.29</td>
<td>78+/-.39</td>
<td>D-017940-01</td>
</tr>
<tr>
<td>siRNA 2*</td>
<td>115+/-.4</td>
<td>55+/-.5</td>
<td>D-017940-02</td>
</tr>
<tr>
<td>siRNA 3</td>
<td>90+/-.9</td>
<td>79+/-.9</td>
<td>D-017940-03</td>
</tr>
<tr>
<td>siRNA 4</td>
<td>110+/-.4</td>
<td>90+/-.9</td>
<td>D-017940-04</td>
</tr>
<tr>
<td>Delta-COP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siRNA 1</td>
<td>99+/-.8</td>
<td>64+/-.9</td>
<td>D-013063-01</td>
</tr>
<tr>
<td>siRNA 2*</td>
<td>84+/-.4</td>
<td>33+/-.5</td>
<td>D-013063-02</td>
</tr>
<tr>
<td>siRNA 3*</td>
<td>76+/-.21</td>
<td>48+/-.11</td>
<td>D-013063-03</td>
</tr>
<tr>
<td>siRNA 4*</td>
<td>76+/-.16</td>
<td>34+/-.17</td>
<td>D-013063-04</td>
</tr>
<tr>
<td>Gamma1-COP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siRNA 1</td>
<td>72+/-.11</td>
<td>102+/-.1</td>
<td>D-019138-01</td>
</tr>
<tr>
<td>siRNA 2</td>
<td>54+/-.2</td>
<td>78+/-.4</td>
<td>D-019138-02</td>
</tr>
<tr>
<td>siRNA 3*</td>
<td>95+/-.6</td>
<td>55+/-.5</td>
<td>D-019138-03</td>
</tr>
<tr>
<td>siRNA 4</td>
<td>66+/-.28</td>
<td>80+/-.4</td>
<td>D-019138-04</td>
</tr>
<tr>
<td>Zeta1-COP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siRNA 1</td>
<td>57+/-.24</td>
<td>95+/-.2</td>
<td>D-020293-01</td>
</tr>
<tr>
<td>siRNA 2</td>
<td>61+/-.14</td>
<td>32+/-.8</td>
<td>D-020293-02</td>
</tr>
<tr>
<td>siRNA 3</td>
<td>59+/-.26</td>
<td>63+/-.14</td>
<td>D-020293-03</td>
</tr>
<tr>
<td>siRNA 4*</td>
<td>94+/-.20</td>
<td>41+/-.11</td>
<td>D-020293-04</td>
</tr>
<tr>
<td>Zeta2-COP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siRNA 1</td>
<td>92+/-.8</td>
<td>109+/-.4</td>
<td>D-021116-01</td>
</tr>
<tr>
<td>siRNA 2</td>
<td>122+/-.9</td>
<td>82+/-.3</td>
<td>D-021116-02</td>
</tr>
<tr>
<td>siRNA 3</td>
<td>83+/-.4</td>
<td>103+/-.4</td>
<td>D-021116-03</td>
</tr>
<tr>
<td>siRNA 4*</td>
<td>96+/-.3</td>
<td>31+/-.9</td>
<td>D-021116-04</td>
</tr>
</tbody>
</table>

¶ Values are expressed as percentages of the total or infected cells in untreated (buffer control) samples infected with VSV-eGFP.

*Indicates siRNAs that significantly reduced VSV infection without reducing cell viability.