The Host Phosphoinositide 5-Phosphatase SHIP2 Regulates Dissemination of Vaccinia Virus

Shannon McNulty1§, Kimberly Powell2, Christophe Erneux3, and Daniel Kalman2*

1Microbiology and Molecular Genetics Graduate Program, Emory University School of Medicine, Atlanta, GA 30322, USA.
2Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
3Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Free University of Brussels, Campus Erasme, Brussels, Belgium.
§Present Address: Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
*Corresponding author

Corresponding Author Address:
Pathology Department, Emory University
Whitehead Biomedical Building Rm #144
615 Michael St.
Atlanta, GA 3032
404-712-2326
Fax: 404-712-2979
dkalman@emory.edu

Illustrations: 5 Figures, 5 Supplementary Figures

Key Words: SHIP2, Vaccinia Virus, Poxviruses, NWASP

Running Title: SHIP2 Controls Vaccinia Spread

Abstract word count: 144

Text word count: 4170
ABSTRACT

After fusing with the plasma membrane enveloped poxvirus virions form actin-filled membranous protrusions, called tails, beneath themselves and move towards adjacent uninfected cells. While much is known about the host and viral proteins that mediate formation of actin tails, much less is known about the factors controlling release. We found that the phosphoinosotide 5-phosphatase SHIP2 localizes to actin tails. Localization requires phosphotyrosine, Abl- and Src-family tyrosine kinases and N-WASP, but not the Arp2/3 complex, nor actin. Cells lacking SHIP2 have normal actin tails, but release more virus. Moreover, cells infected with viral strains with mutations in the release inhibitor A34 release more virus but recruit less SHIP2 to tails. Thus, the inhibitory effects of A34 on viral release are mediated by SHIP2. Together, these data suggest that SHIP2 and A34 may act as gatekeepers to regulate dissemination of poxviruses when environmental conditions are conducive.
Orthopoxviruses, including vaccinia virus (VACV), monkeypox (MPXV), and variola (VARV), are large dsDNA viruses that cause characteristic umbilicated vesiculo-pustular skin lesions (“pox”) (12). VARV is the causative agent of smallpox, and VACV is used for vaccination against smallpox (12). Although smallpox has been eradicated, naturally occurring poxviruses are still of concern to humans. In particular, MPXV is endemic in Africa (57) and has the potential for spread to humans from bushmeat and squirrels (28, 29, 53, 57, 58), and recent outbreaks in the Democratic Republic of Congo have raised the possibility of human-to-human transmission (58). Efforts to understand the capacity for human-to-human transmission amongst poxviruses have focused on how the virus spreads from cell to cell.

Infection by poxviruses is initiated upon entry of either of two different forms of the virus. The first, called the intracellular mature virus (IMV; also called mature virion (MV)), consists of a viral core surrounded by one or two lipid bilayers derived from an ER-golgi intermediate compartment (ERGIC) (21, 59, 61, 71). A second infectious form of the virus, called the extracellular enveloped virus (EEV; also called enveloped virus “EV”) (67), consists of an IMV enveloped in additional membranes derived from the host cell. IMV are released following lysis of host cells (60), whereas the precursor of EEV traffic along microtubules to the cell periphery (15, 20, 56, 75). Upon fusion with the plasma membrane, the doubly-enveloped virion stimulates formation of actin-filled membranous protrusions called “tails,” and then disengages from the host cell (67).

Formation of actin tails occurs by a mechanism conserved amongst VACV, MPXV and VARV (55). EEV recruit host Abl- and Src- family tyrosine kinases (39, 40,
54), which phosphorylate viral protein A36 at residues 112 and 132 (40), thereby facilitating recruitment of Nck, Grb2, WIP and N-WASP (13, 14, 37, 63, 76). Interactions with PI(4,5)P$_2$ in the plasma membrane induce conformational changes in N-WASP, which allow the protein to bind to and activate Arp2/3 complex, a nucleator for actin polymerization (37, 62). The rate of actin-mediated propulsion and actin tail length appear to be a function of the turnover rate and interactions amongst viral factors and recruited host proteins (8, 76).

While extensive information is available about the viral and host factors that initiate actin polymerization, much less is known about the viral and host factors that contribute to virion release. Based on mutation experiments, several viral factors (including F12, F13, A33, A34, B5, and A36) have been implicated in viral release (67), although in many cases, such mutations also affect actin tail formation or specific infectivity thereby precluding unequivocal determination of the role these proteins play in release. That virus release also depends on cell type (36, 44), indicates that host factors also participate. Reeves et al. separated actin motility from release by demonstrating that redundant Src- and Abl-family tyrosine kinases mediate tail formation, whereas only Abl-family kinases mediate release (54).

Previous work from our lab and others has implicated PI 3-kinase activities at several distinct steps of viral maturation, though not in formation of actin tails nor in release (35, 70, 81). Nevertheless, the observation that host proteins involved with vesicular trafficking, such as Alix, Tsg101 and eps15, also affect poxviral spread (22) suggest lipid signaling may also regulate viral dissemination. In this regard, we considered the
possibility that other lipid and phosphoinositide (PI) signaling molecules, including lipid phosphatases, might also participate in virion release.

SHIP2 and its related isoform SHIP1 are SH2 domain-containing inositol polyphosphate 5-phosphatases (7, 27, 31, 32, 47). Whereas SHIP1 is expressed in hematopoietic cells, SHIP2 is expressed ubiquitously (18, 65). Both isoforms exhibit PI 5-phosphatase activity with respect to PI(3,4,5)P3 and PI(4,5)P2 as substrates (5, 16, 18, 38, 49, 72, 77) Originally identified as a negative regulator of insulin signaling (6), SHIP2 mutations have also been linked to metabolic disorders, including, type II diabetes (23-25, 33, 66). In addition, SHIP2 has also been implicated in regulating cytoskeletal organization and endocytosis (38, 51, 68, 80). Furthermore, Smith et al. demonstrated that SHIP2 localizes to actin protrusions, called pedestals, which form beneath enteropathogenic E. coli (EPEC), and that reduction of SHIP2 levels causes an aberrant pedestal structure (68).

Here we demonstrate that SHIP2 localizes beneath VACV during actin tail formation in a manner that depends on both tyrosine kinases and N-WASP, but not actin. We also show that SHIP2 negatively regulates release of virions, and may act as a gatekeeper molecule that limits poxvirus dissemination.

MATERIALS AND METHODS

Cells, Viruses, and Reagents. BSC40, 3T3, Abl1+/-, Abl2+/-, NWASPff, and NWASP-/- cells (ATCC) were grown in DMEM (Cellgro, MediaTech, Inc; Manassas, VA) supplemented with 10% FBS (Atlanta Biologicals; Norcross, GA) and 10 IU/mL Penicillin and 10 µg/mL streptomycin (P/S; Cellgro, MediaTech, Inc.; Manassas, VA).
Src\(^+/\)-Fyn\(^+/\)-Yes\(^+/\) cells were grown in DMEM (Gibco; Carlsbad, CA) supplemented with 10% FBS and P/S. SHIP2\(^+/\) and SHIP2\(^{-/-}\) cells were grown in DMEM (Gibco; Carlsbad, CA) supplemented with 10% FBS, P/S, and 1% of 50mM β-mercaptoethanol in DPBS. All cells were grown at 37°C in a 5% CO\(_2\) incubator. Mouse embryonic fibroblasts were isolated from embryos that were homozygous for a knockout of the SHIP2 (INPPL1) gene (6) and were prepared as reported in Zhang et al. (82) Viral strains were grown and propagated as previously described (54). Viral strain WI was provided by Bernard Moss and consisted of the WR strain containing A34 derived from IHD-J (3). VACV strain IHD-J expressing luciferase was made by Reeves et al. and consisted of the firefly luciferase gene under the control of a synthetic early/late promoter (55). All viral strains were titred on BSC40 cells.

Microscopy. Various cell lines used for microscopy were plated onto PDL/Collagen coated glass coverslips and infected with \(\approx 10^6 \) PFU WR or F13-gfp virus for 16 hours. After 16 hours, cells were fixed as previously described (54) and processed for microscopy. To detect DNA, cells were stained with 17µg/mL DAPI. Actin was visualized using Phalloidin-564 (Molecular Probes, Invitrogen; Carlsbad, CA). Antibodies for microscopy were used at the following dilutions: Anti-SHIP1 (Cell Signaling Technology; Beverly, MA), anti-SHIP2 (α-INPPL1, Novus Biologicals, Littleton, CO), anti-LPD (α-RAPH, Sigma; St. Louis, MO), and anti-SHC (BD Transduction Labs) were used at 1:50 dilution, anti-Xpress (Invitrogen; Carlsbad, CA) was used at 1:200, anti-PY (4G10, Millipore; Billerica, MA) and anti-Myc (9E10, Millipore; Billerica, MA) were used at 1:250. Anti-B5 was a gift from Jay Hooper, USAMRIID and was isolated from rabbits vaccinated with a B5 DNA vaccine. Anti-B5
was added to cells after permeabilization and used at 1:5000 dilution. Tyrosine kinase inhibitors, imatinib mesylate or dasatinib, were added to cells at 10µM for 30 minutes after a 15.5 hour infection. For transfections, cells were transfected with various SHIP2 constructs (49, 82) or Myc-SHIP1 using FuGene 6 (Roche, Indianapolis, IN) for 48 hours. We did not observe a difference in the number of actin tails formed on infected transfected cells.

Comet Assays. Experiments with vaccinia virus were conducted under BSL-2 conditions. 100PFU or 10PFU of vaccinia virus strain WR, IHD-J, vRB12 (WR ΔF13), or WI was diluted in 500 µL of 2% FBS/DMEM and added to monolayers of naïve BSC40, SHIP2+/+ or SHIP2−/− cells in 6 well dishes. Virus was allowed to adsorb to and enter the cells for one hour at 37°C in 5% CO2. Unbound virus was then removed by washing monolayers with one mL PBS. Media was then replaced with 10% FBS/DMEM. Two days after infection, monolayers were fixed and stained with crystal violet solution (0.1% crystal violet and 20% ethanol).

EEV and CAV measurements. To quantify the amount of EEV and CAV produced SHIP2+/+ and SHIP2−/− cells were grown in 6-well dishes in triplicate wells. Cell numbers were quantified and cells were infected at a multiplicity of infection (MOI) of 5 or 0.01 with strain IHD-J. Virus was diluted in 500 µL of 2% FBS in DMEM and allowed to adsorb to cells for one hour. Unbound virus was then removed by washing cells three times with PBS, and then adding 1.5 mL of 10% FBS in DMEM. To quantify EEV, supernatant was removed at 24 or 48 hours later, spun at 400xg for 10 minutes to remove cells. IMV were neutralized with 1:1000 10F5 (anti-L1) antibody (a gift from Jay Hooper, USAMRIID) for one hour at 37°C; the supernatant was then diluted and added.
to naïve BSC40 cells monolayers, and plaques enumerated after two days. To quantify CAV, monolayers were scraped into one mL 2%FBS in DMEM, and virus was released through three freeze/thaw cycles. CAV were diluted and added to naïve BSC40 monolayers.

RNAi. To knockdown SHIP2 protein, BSC40 cells in duplicate 6-wells were transfected with 50nM RNA complementary to SHIP2 (INPPL1 ON-TARGET plus siRNA Human sequences 1, 2, 3, 4, Dharmacon) using RNAiMAX lipofectamine reagent (Invitrogen; Carlsbad, CA). After 3 days cells were infected with 100PFU VACV, strain IHDJ, for 48 hours. After this time plaques were fixed and stained with crystal violet. To confirm protein knockdown BSC40 cells in triplicate 6-wells were transfected with 50nM RNA complementary to SHIP2 for three days and protein knockdown was confirmed by Western blot with anti-SHIP2 (α-INPPL1, 1:500, Novus Biologicals, Littleton, CO) and anti-GAPDH (1:1000, Sigma-Aldrich; St. Louis, MO).

Luciferase Assay. To quantify viral entry, SHIP2+/+ and SHIP2−/− cells were grown in 6-well dishes in triplicate wells. Cell numbers were quantified and cells were infected at a multiplicity of infection of 5 with strain IHD-J expressing luciferase (55). Virus was diluted in 500 µL of cold 2% FBS in DMEM and allowed to adsorb to cells for one hour at 4°C. Unbound virus was then removed by washing cells three times with cold PBS, and adding 1.5 mL of pre-warmed 10% FBS in DMEM. After a two hour infection cells were lysed and protein concentration was determined using the Bio-Rad Dc Protein Assay Kit (Bio-Rad; Hercules, CA). Luciferase expression was measured using 20µg of protein with the Bright-Glo luciferase assay system (Promega, Madison, WI) and a Synergy HT BioTek plate reader.
Specific Infectivity. Specific infectivity was calculated using an OD$_{260}$ approach described in (42). Briefly, SHIP2$^{+/+}$ and SHIP2$^{-/-}$ cells were grown in three 150cm2 tissue culture dishes, and infected with \sim108 PFU/mL IHD-J for three days. To liberate virus, flasks were subjected to three freeze/thaw cycles. Media and cell debris was purified from media by spinning samples at 10,000 RPM in a JA-10 rotor for 1.25 hrs. Cell debris and virus was resuspended in two mL 2% FBS in DMEM. To remove cell debris, samples were spun at 400xg for 10 minutes. Virus was further purified through a 36% sucrose cushion, followed by two 25-40% sucrose gradients. Viral particles were quantified with OD$_{260}$, where one OD$_{260} = 1.2 \times 10^{10}$ particles. To calculate infectious particles, purified virus was diluted in 2% FBS in DMEM and added to naïve monolayers, and the plaques enumerated two days later. Specific infectivity was calculated as 136.3 ±46.5 particles/PFU for SHIP2$^{+/+}$ cells and 80.0 ±18.0 particles/PFU for SHIP2$^{-/-}$ cells.

Western Analysis. BSC40 or CRL2019 cells were grown in 10 cm tissue culture dishes. Cells were lysed in RIPA buffer (Cell Signaling; Beverly, MA), and protein concentration was determined using the Bio-Rad DC Protein Assay Kit (Bio-Rad; Hercules, CA). 100 µg of protein was separated by SDS-PAGE; proteins were then transferred to nitrocellulose membranes. Those were blocked with 3% milk in Tris-buffered saline containing 0.5% Tween-20 (TBST) for one hour. Membranes were probed with anti-SHIP1 (1:1000), anti-SHIP2 (1:500), or anti-tubulin (1:5000, Abcam; Cambridge, MA) in blocking solution for an additional hour. Bands were detected using anti-mouse or anti-rabbit antibodies conjugated to HRP (GE Healthcare; UK) and blots.
RESULTS

The inositol phosphatase SHIP2 localizes to VACV actin tails. To explore a role for PI signaling in actin tail formation and virion release, we first assessed whether PI kinases or phosphatases localized beneath virions. We could not detect localization of Type I PI 3-kinases with several antisera (data not shown). However, an endogenous protein recognized by an antibody to the phosphoinositide phosphatase SHIP2 was enriched relative to the cytoplasm at the tips of actin tails and directly apposed to the virion (Figure 1A, A’). Localization of SHIP2 was apparent in the majority of actin tails in BSC40 cells. The localization appeared specific as antisera that detects SHIP1 but not SHIP2 did not recognize epitopes in actin tails (Figure 1B). Western analysis confirmed that SHIP1 was not expressed at detectable levels in BSC40 cells in contrast to SHIP2 (Figure S1A,B). However, exogenously expressed SHIP1 did localize to tails in BSC40 cells (Figure S1C).

To identify the domains of SHIP2 necessary for recruitment to actin tails, we transiently transfected vectors expressing SHIP2-WT or SHIP2 variants containing point mutations or deletions of particular domains into BSC40 cells (Figure 1C). Overexpressed SHIP2-WT (Figure 1D) localized to the tops of tails, as did a phosphatase dead mutant (D607A) (Figure 1E), and a SAM domain deletion mutant (SHIP2-ΔSAM; Figure 1F). The localization of SHIP2-ΔSAM to actin tails appeared consistent with the localization of exogenous SHIP1, which lacks a SAM domain (Figure S1C). By contrast,
SHIP2 lacking the SH2 domain (SHIP2-∆SH2) did not localize to actin tails (Figure 1G).

Together, these data suggest that the SH2 domain is required for localization of SHIP2 to actin tails; however, neither phosphatase activity nor the SAM domain appeared required for localization.

Localization of SHIP2 requires Abl- and Src family tyrosine kinases and N-WASP, but not actin. Observations with SHIP2-∆SH2 indicated that tyrosine phosphorylation might be required for localization of SHIP2 to actin tails. We next assessed whether localization of SHIP2 was evident in cell lines lacking particular tyrosine kinases, or in cells treated with tyrosine kinase inhibitors. SHIP2 remained localized to actin tails formed on Abl1−/−Abl2−/− cells, Src−/−Fyn−/−Yes−/− cells, and on cells treated with 10 μM imatinib mesylate (STI-571, Gleevec), an inhibitor of Abl-family kinases (Figure 2A) (64). However, in cells treated with dasatinib (BMS-354825 or Sprycel), an inhibitor of both Abl- and Src-family kinases and actin tails (55), no localization of SHIP2 was evident apposed to virions (Figure 2B).

To determine whether localization of SHIP2 requires other components of VACV actin tails, we next assessed SHIP2 localization in fibroblast cell lines derived from N-WASP+/− or N-WASP−/− mice, and infected with VACV. Cell lines deficient in N-WASP fail to form tails (69); therefore, we measured the colocalization of SHIP2 with phosphotyrosine and α-B5, components of cell-associated virions. In N-WASP−/− cells, 25% of virions colocalized with both SHIP2 and phosphotyrosine (Figure 2C,D and Figure S2). In contrast, only 1.9% of virions lacking a phosphotyrosine signal colocalized with SHIP2. In N-WASP+− cells, the percentage of virions colocalizing with SHIP2 was similar whether phosphotyrosine was present or not (1.8-2.7%), and similar to that...
observed in N-WASPf/f cells for virions lacking phosphotyrosine. This data suggests that
1 N-WASP and phosphotyrosine together are required for localization of SHIP2. To rule
2 out the possibility that localization of SHIP2 required the Arp2/3 complex or actin, we
3 assessed localization of SHIP2 in BSC40 cells expressing N-WASP-\Delta CA, which fails to
4 recruit the Arp2/3 complex and thereby precludes formation of actin tails (26). As shown
5 in Figure 2E, SHIP2, N-WASP-\Delta CA, and the virion (detected with \alpha-B5 mAb)
6 colocalized. Collectively, these data suggest that: (i) activity of Abl- or Src-family
7 kinases, perhaps acting redundantly (54), is required for localization of SHIP2; and (ii)
8 localization depends on N-WASP but not the Arp2/3 complex nor actin. The interaction
9 between SHIP2 and N-WASP appears to be indirect as we were unable to detect a direct
10 association of SHIP2 with N-WASP in immunoprecipitation experiments (data not
11 shown).

\textbf{SHIP2 does not regulate formation of actin tails.} Localization of SHIP2 beneath
12 virions on actin tails raised the possibility that the protein might regulate either actin tails
13 or virion release or both. To test these possibilities, we first assessed actin tails in
14 embryonic fibroblasts derived from SHIP2++ and SHIP2-- mice. As shown in Figure 3A,
15 the number and size of actin tails appeared similar in the two cell types, as did the
16 velocities of virions on tails (data not shown). We also did not observe a difference in the
17 number or localization of B5-positive virions outside of these cells (data not shown). We
18 confirmed that SHIP1 was not expressed in either SHIP2++ or SHIP2-- cells, SHIP2 was
19 not expressed in the SHIP2-- cells, and SHIP2 was evident only on the tops of actin tails
20 found in SHIP2++ but not in SHIP2-- cells (Figure S3). Previous work by Smith \textit{et al.}
21 identified two interacting partners of SHIP2, SHC and LPD, which localize to EPEC
pedestals (68) and Krause et al. identified LPD as localizing to VACV actin tails (30).

We confirmed that LPD as well as SHC localized to the tips of VACV tails (Figure S4A,B). However, both SHC and LPD were recruited to tails in both SHIP2\(^{+/+}\) cells and SHIP2\(^{-/-}\) cells. Together, these data suggest that SHIP2 is neither required for formation of actin tails, nor for the recruitment of LPD or SHC.

SHIP2 Regulates Virion Dissemination by Inhibiting Release of EEV. We next investigated the effects of SHIP2 on plaque formation. To do this, SHIP2\(^{+/+}\) or SHIP2\(^{-/-}\) cells were infected with VACV strain, IHD-J, which releases large numbers of EEV (3).

At 32 hrs post infection, plaques formed by IHD-J are similar in size to those seen with other strains (e.g. WR; Figure 3B, upper panel). However, unlike WR, IHD-J plaques are associated with an archipelago of smaller plaques, termed “comets,” which are evident 48 hours after infection, and indicative of enhanced EEV release in this strain (1, 19).

Characteristic plaques formed by IHD-J were evident on SHIP2\(^{+/+}\) and SHIP2\(^{-/-}\) cells by 32 hours (Figure 3B, upper panel), though plaques were slightly larger on SHIP2\(^{-/-}\) cells. Comets visualized at 48 hours post infection were significantly larger in SHIP2\(^{-/-}\) cells compared to those on SHIP2\(^{+/+}\) cells, often merging with adjacent comets and extending across the plate (Figure 3B, lower panel). We next measured the amount of EEV released by SHIP2\(^{+/+}\) or SHIP2\(^{-/-}\) cells into the supernatant. In accordance with the plaque assays, ~3-fold more EEV and CAV grew in SHIP2\(^{-/-}\) cells compared to SHIP2\(^{+/+}\) cells at low MOI (0.01) (Figure 3C), consistent with increased viral spread in the monolayer. We did not observe a difference in the ratio of EEV:CAV between both cell types, and viral replication was similar at MOI of 5 suggesting that the SHIP2 does not affect viral replication (data not shown). To corroborate data from SHIP2\(^{-/-}\) cells, we next knocked
down SHIP2 in BSC40 cells. BSC40 cells treated with either of three siRNAs specific to SHIP2 (sequences 2, 3, 4) exhibited larger comets than those seen with Negative siRNA, the transfection reagent (RNAiMAX), or untreated cells (Figure 3D). Knockdown of SHIP2 was confirmed by Western analysis (Figure 3E).

To confirm that the large comets formed on the SHIP2^{-/-} cells were specifically due to increased release of EEV, we carried out two additional experiments. Reeves et al. found that release of EEV required activity of Abl-family tyrosine kinases (54). In accordance with the idea that more EEV are released from SHIP2^{-/-} cells than SHIP2^{+/+} cells, we found that the Abl-family tyrosine kinase inhibitor imatinib mesylate blocked comets in SHIP2^{+/+} cells and reduced the size and extent of comets in SHIP2^{-/-} cells (Figure 4A). Second, we infected both cell types with WR vRB12, a virus lacking F13L (2), a gene required to form EEV and comets. As shown in Figure 4B, vRB12 formed similar sized plaques on both SHIP2^{+/+} and SHIP2^{-/-} cells, but did not form comets on either cell type. We could find no evidence to support the possibility that differences in infectivity or rates of cellular migration could account for the apparent increase in size of comets in SHIP2^{-/-} cells. Furthermore, luciferase under the control of an early/late promoter was similarly expressed between both cell types at two hours post infection, indicating that increased viral entry did not account for enhanced comet size (Figure S5). In addition, specific infectivity of VACV produced in SHIP2^{-/-} and SHIP2^{+/+} cells was similar, as was the numbers of plaques formed on both cell types, and no differences in rates of movement of SHIP2^{+/+} and SHIP2^{-/-} cells were evident (data not shown).

Collectively, these data suggest that SHIP2 inhibits release of EEV.
VACV Protein A34 mediates the effects of SHIP2 on inhibition of EEV release. The observation that deletion of A34 in VACV enhances release of virus (34), suggests that A34, a component of EEV, acts as an inhibitor of release. In accordance with this idea, the VACV strain IHD-J, which contains a mutation in A34, releases more EEV and forms larger comets than strain WR, and a WR strain containing A34 derived from IHD-J (called WI) forms larger comets than WR (3). The large comets evident in SHIP2−/− cells compared to SHIP2+/+ cells led us to hypothesize that A34 may act via SHIP2. To test this possibility, we assessed the effects of WR and WI comets formed on SHIP2+/+ and SHIP2−/− cells. As shown in Figure 4C, WR was unable to form comets on SHIP2+/+ cells, but did form comets on SHIP2−/− cells (Figure 4C). WI produced small comets on SHIP2+/+ cells, but large comets on SHIP2−/− cells (Figure 4D), reminiscent of those seen with IHD-J in these cells (Figure 3B). We hypothesized that the capacity of IHD-J and WI to form larger comets than WR was due to differences in the recruitment of SHIP2 to actin tails in these strains. As shown in Figure 4E, an inverse correlation exists between EEV release and the efficacy of SHIP2 recruitment to actin tails. Thus, whereas strain WR recruited SHIP2 to 69% of actin tails, strains IHD-J and WI recruited SHIP2 to 54% and 49% of tails, respectively, a statistically significant difference compared to WR (p<0.0003, and p<0.0001; Figure 4E). Collectively, these data suggest that (i) recruitment of SHIP2, via its SH2 domain, requires NWASP and Abl- and Src-family tyrosine kinases, but these proteins alone are not sufficient; ii) viral protein A34 recruits SHIP2 to actin tails; and (iii) that SHIP2 at least in part mediates inhibition of release by A34.

DISCUSSION
Here we explore the role of the phosphoinositide 5-phosphatase SHIP2 in release of VACV from infected cells. We found that SHIP2 localizes to actin tails in an SH2-dependent manner, suggesting that phosphorylated tyrosines on cellular or viral proteins within the tail mediate recruitment. Host Src- and Abl-family kinases localize to and redundantly form tails (14, 54), and we find that these kinases are also required for recruitment of SHIP2 (Figure 2). Abl- but not Src-family kinases also appear to play a role in enhancing release of EEV (54). In this regard, comets formed on SHIP2+/+ and SHIP2−/− cells are blocked by imatinib mesylate, a specific inhibitor of Abl-family kinases (54). Thus, Abl-family kinases play dual but antagonistic roles in EEV release, by both facilitating recruitment of a release inhibitor (SHIP2) and promoting virion release (Figure 5).

Src- and Abl-family tyrosine kinases phosphorylate the viral protein A36 at two sites suggesting that phosphorylated A36 may directly recruit SHIP2 (40). However, this seems unlikely because phospho-A36 recruits NWASP via Nck and WIP (14, 37), and SHIP2 recruitment also depends on NWASP. We cannot rule out the possibility that factors distal to NWASP may recruit SHIP2. Whereas Grb2 is one such candidate (63), the Arp2/3 complex and actin do not appear to be involved as SHIP2 does not affect actin tails and NWASP-ΔCA, which does not recruit the Arp2/3 complex, still recruits SHIP2. In this regard, Smith et al. found that SHIP2 appears to regulate host lipids and actin polymerization in EPEC pedestals (68), which resemble actin tails formed by vaccinia (17). However, our data do not recapitulate the EPEC phenotype, suggesting that VACV utilizes SHIP2 in a manner distinct from EPEC.
Still unresolved is whether SHIP2 inhibits virion release via its catalytic activity or, alternatively, serves as a scaffold to recruit effectors. Two known SHIP2 binding partners, SHC and LPD, are recruited to VACV actin tails, though by a mechanism that appears to be independent of SHIP2 (Figure S3). Nevertheless, other SHIP2 effectors have been described including EGFR, filamin, p130Cas, Cbl, Vinexin, Arap3, APS, JIP-1, and Intersectin (11, 38, 41, 43, 48, 50, 52, 73, 78, 79).

Another possibility is that SHIP2 phosphatase activity is required to inhibit release of EEV. In this regard, we have attempted to localize PH domains that specifically recognize various PIPs on actin tails. Although some PH domains do appear to localize, point mutants that abolish binding to lipid moieties in vitro also localize, suggesting that recruitment is nonspecific (S.L.M. and D.K. unpublished). Furthermore, we have been unable to detect Akt-PH, Akt, or Akt-(P)S473 at the tops of tails (S.L.M. and D.K. unpublished). Notably, we cannot rule out the possibility that expression of the PH-domain alone does not compete effectively with intact proteins that utilize multiple binding sites, a phenomenon we observed previously with localization of proline rich regions and SH2 domains from tyrosine kinases in EPEC pedestals (4).

Do viral proteins participate with SHIP2 to regulate release of EEV? The observation that deletion of A34 or point mutations within A34 (K151E) enhance release of EEV (3) raises the possibility that the normal function of A34 is to suppress EEV release. Our data suggest that A34 mediates recruitment of SHIP2, and that SHIP2 at least in part mediates inhibition of release by A34 (Figure 4). A34 exists in a complex with viral proteins A33, A36, B5, and F13 (45, 46); therefore, it remains possible that SHIP2 tethers a complex of host and viral proteins that regulate viral release. Other intrinsic host defense molecules
have been recently described including tetherin and viperin, which are induced in an interferon-dependent manner. Tetherin is antagonized by the HIV protein VPU, and viperin by a cellular protein FPPS, which facilitates virion release (9) (74). By contrast, VACV regulation of release through SHIP2 appears distinct. Rather than antagonizing release, A34 cooperates with SHIP2 to inhibit release. A34 is a transmembrane glycoprotein with homology to c-type lectins (10), and may detect the presence of leukocytes, cell adhesion molecules or endocytic receptors. In so doing, A34 may play a “gatekeeper” role so as to limit release except when environmental conditions are conducive to dissemination.

ACKNOWLEDGEMENTS

This work was supported by National Institutes of Health R56A105896101A2 and R01A107246201A2 to DK and by a grant from the Fonds de la Recherche Scientifique Médicale (FRSM) to CE.

We thank Jay Hooper (USAMRIID) for sharing antibodies and Bernard Moss (NIH) for sharing the WI virus. We also thank Jack Taunton (UCSF) for sharing the NWASPdif and NWASP$^{f/f}$ cells. Many thanks to Sam Speck, Eric Hunter, Victor Faundez, Aron Lukacher, Ed Mocarski and Alyson Swimm (Emory University) for insightful comments and discussion.
REFERENCES

encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51:2012-7.

with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cell Signal 19:1249-57.

FIGURE LEGENDS

Figure 1. SHIP2 is recruited to VACV actin tails via its SH2 domain.

(A) Images of BSC40 cells infected with VACV strain WR and stained with antibodies recognizing endogenous SHIP2. Inset in A’ shows magnification of boxed region in (A).

(B) Images of BSC40 cells infected with VACV strain WR and stained with antibodies recognizing endogenous SHIP1. See also Figure S1.

(C) Domain organization of SHIP2 and SHIP2 mutants.

(D-G) Images of BSC40 cells expressing Xpress-SHIP2WT (D), or SHIP2 mutants Xpress-SHIP2D607A (E), Xpress-SHIP2ΔSAM (F), or Xpress-SHIP2ΔSH2 (G). Note that deletion of the SH2 domain prevented localization to actin tails. Insets below each image show magnification of boxed region. Scale bars represent 10 µm.

Figure 2. Localization of SHIP2 requires Abl- and Src family tyrosine kinases and N-WASP, but not actin.

(A) Images of endogenous SHIP2 in actin tails formed by WR on 3T3 cells, 3T3 cells treated with 10µM imatinib mesylate (inhibits Abl1 and Abl2), Abl1−/− Abl2−/− cells, or Src−/− Fyn−/− Yes−/− cells. Scale bars represent 2 µm.

(B) Endogenous SHIP2 does not appear localized with F13-GFP virions following dasatinib treatment, which inhibits both Src- and Abl-family kinases, and blocks actin tails. Scale bars represent 2 µm.

(C) Images of colocalization of SHIP2 with vaccinia virus protein B5 and phosphotyrosine (PY) in NWASP+/+ or NWASP−/− cells. Arrows indicate colocalization of...
all three proteins, and inset is a magnification of the indicated WR virion. Scale bars represent 5 µm. See also Figure S2.

(D) Quantification of colocalization of B5 fluorescence, SHIP2, and PY in images such as in (C). Data are expressed as percent of total virions on which SHIP2 was colocalized with B5 with or without PY staining in NWASP
superset
superset
subscript
subscript

f/f
subscript
subscript

cells (n=1244 virions) and NWASP
superset
superset
subscript
subscript

cells (n=1133 virions).

(E) Localization of SHIP2 to WR virions does not require actin. BSC40 cells were transfected with pNWASP-WT-HA or pNWASP-∆CA-HA and infected with VACV. Colocalization of SHIP2 with B5 was evident in cells transfected with either NWASP-WT-HA or NWASP-∆CA-HA. Scale bars represent 2 µm.

Figure 3. SHIP2 regulates virion dissemination independent of actin tail formation.

(A) VACV strain WR forms actin tails on SHIP2
superset
superset
subscript
subscript

+/+
subscript
subscript

and SHIP2
superset
superset
subscript
subscript

−/−
subscript
subscript

cells. Cells were stained for actin (red) and DNA (blue). Scale bars represent 10 µm. See also Figures S3 and S4.

(B) VACV strain IHD-J forms larger comet tails in SHIP2
superset
superset
subscript
subscript

−/−
subscript
subscript

cells than in SHIP2
superset
superset
subscript
subscript

+/+
subscript
subscript

cells. Cells were infected for 32 hours (upper panels, 60X) or 48 hours (lower panels, 10X), and stained with crystal violet to visualize plaques.

(C) Quantification of extracellular enveloped virions (EEV) and cell-associate virions (CAV), strain IHD-J, from SHIP2
superset
superset
subscript
subscript

+/+
subscript
subscript

and SHIP2
superset
superset
subscript
subscript

−/−
subscript
subscript

cells at 24 and 48 hours post infection.

(D) SHIP2 knockdown with siRNA enhances virion release relative to control cells. BSC40 cells were left untreated, or treated with lipofectamine reagent (RNAiMAX), Negative siRNA, or either of three siRNAs that target SHIP2 (#2, #3, or #4) for 3 days,
and infected with VACV strain IHD-J for 2 days and stained and visualized at 16X magnification.

(E) Upper Panel: western analysis with SHIP2 antisera of lysates of BSC40 cells left untreated or treated as in (D). Lower panel: western analysis of lysates with GAPDH antisera to confirm equivalent loading of samples.

Figure 4. A34 and SHIP2 negatively regulate virion dissemination.

(A) Release of virions from SHIP2^{+/+} and SHIP2^{-/-} cells is sensitive to imatinib mesylate. Cells were infected with VACV IHD-J for 48 hours post infection and stained with crystal violet. Plaques were visualized by microscopy at 16X magnification. Imatinib mesylate (10µM) was added to cells at 1 hour post infection.

(B) Comets formed on SHIP2^{+/+} and SHIP2^{-/-} cells are specifically due to EEV. Cells were infected for 72 hours with WR vRB12, a virus lacking the F13L gene, and unable to form EEV. Although plaques formed on the two cell types were of similar size, no comets were evident. Plaques were visualized at 60X magnification.

(C) Plaques formed by VACV strain WR on SHIP2^{+/+} and SHIP2^{-/-} cells 48 hours post infection (10X).

(D) Plaques formed by VACV strain WI on SHIP2^{+/+} and SHIP2^{-/-} cells 48 hours post infection (10X).

(E) Quantification of SHIP2 recruitment to actin tails in cells infected with VACV strains WR, IHD-J or WI. WR (n=2597 tails, 45 cells) recruits more SHIP2 to tails than IHD-J (n=2046 tails, 58 cells) (p=0.0003) or WI (n=2763 tails, 32 cells) (p=0.0001).
Figure 5. Overview of SHIP2 recruitment and regulation of virion release.

Supplementary Figure 1. SHIP1/2 Expression and Myc-SHIP1 Localization in BSC40 Cells, related to Figure 1.

(A) Endogenous SHIP2 expression in BSC40 cells. 100µg total cellular protein was separated by SDS-PAGE, transferred to nitrocellulose and probed with antibodies specific to SHIP2 and tubulin.

(B) Endogenous SHIP1 expression in BSC40 and CRL2019 cells. 75µg total cellular protein was separated by SDS-PAGE, transferred to nitrocellulose and probed with antibodies specific to SHIP1 and tubulin.

(C) Exogenously expressed SHIP1 localizes to VACV strain WR actin tails. Cells were transfected with pMyc-SHIP1 for 32 hours and infected with VACV for 16 hours. Cells were stained with DAPI (DNA), cy3-phalloidin (actin), and anti-myc. Scale bars represent 10 µm.

Supplementary Figure 2: Images of SHIP2 with vaccinia virus protein B5 and phosphotyrosine (PY) colocalization in NWASP+/+ or NWASP-/- cells, related to Figure 2. Arrows indicate colocalization of all three proteins. Scale bars represent 5 µm.

Supplementary Figure 3. Endogenous SHIP2 localization in SHIP2+/+ and SHIP2-/- cells, related to Figure 3.