TRIM56 is a virus- and interferon-inducible E3 ubiquitin ligase that restricts pestivirus infection

Running Title: TRIM56 inhibits BVDV replication

Jie Wang¹, Baoming Liu¹, Nan Wang¹, Young-Min Lee², Chunming Liu³, Kui Li¹∗

¹Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; ²Department of Microbiology, Chungbuk National University, Cheongju, South Korea; ³Department of Molecular and Cellular Biochemistry and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA.

*Corresponding Author

Kui Li, PhD, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA. Tel: 901-448-2571; Fax: 901-448-7360; Email: kli1@uthsc.edu
Abstract

The tripartite motif (TRIM) protein family comprises more than 60 members that have diverse functions in various biological processes. Although a small number of TRIM proteins have been shown to regulate innate immunity, much remains to be learned about the functions of the majority of TRIM proteins. Here we identify TRIM56 as a cellular protein associated with the N-terminal protease (Npro) of bovine viral diarrhea virus (BVDV), a pestiviral interferon antagonist which degrades interferon regulatory factor-3 (IRF3) through the proteasome. We found TRIM56 was constitutively expressed in most tissues and its abundance was further upregulated moderately by interferon or virus. Manipulation of TRIM56 abundance did not affect the protein turnover of Npro and IRF3. Rather, ectopic expression of TRIM56 substantially impaired, while knockdown of TRIM56 expression greatly enhanced, BVDV replication in cell culture. The antiviral activity of TRIM56 depended on its E3 ubiquitin ligase activity as well as the integrity of its C-terminal region, but was not attributed to a general augment of interferon antiviral response. Overexpression of TRIM56 did not inhibit the replication of vesicular stomatitis virus or hepatitis C virus, a closely related virus to BVDV. Together, our data demonstrate that TRIM56 is a novel antiviral host factor that restricts pestivirus infection.
Introduction

The tripartite motif (TRIM) protein family consists of more than 60 members that have diverse functions in a broad range of biological processes, including, but not limited to cell proliferation, differentiation, development, apoptosis and immunity (19, 21). Proteins of the TRIM family share the characteristic tripartite (a.k.a., RBCC) motif that comprises a RING finger, one or two B-boxes and a Coiled-coil domain at the N-terminal region. The C-terminal half, however, is variable among different TRIM proteins and can have or not have one or more specific domains that determine the function specificity of some TRIM members. Based on the C-terminal domain composition to the N-terminal RBCC motif, the human TRIMs are classified into 11 subfamilies, C-I to C-XI, with the C-IV group having the largest number of members, all of which contain the SPRY/B30.2-like domain, a conserved region whose function remains unclear but is thought to be involved in protein-protein interactions or RNA binding (21, 22, 29).

The functions of the majority of the TRIM proteins are poorly understood. Based on the presence of the RING domain, it is proposed that the TRIM proteins represent a novel class of single RING-finger E3 ubiquitin ligases that mediate posttranslational modification of different substrates (18). By self-association via the Coiled-coil domains, the TRIM proteins oligomerize and act as a scaffold for assembly of multiprotein complexes which occupy specific cellular compartments (24). TRIM proteins have been shown to be involved in neurological diseases, genetic disorders and carcinogenesis (18), and have recently demonstrated emerging roles in regulating innate immunity to viral infections, which were mainly uncovered through research on host factors that restricts retroviruses (20). For example, TRIM5α from rhesus monkey targets the incoming HIV capsid early postinfection and affects uncoating of the pre-integration complex, a process that depends on the C-terminal B30.2 domain (30). Human TRIM15,
however, interferes with murine leukemia virus release by interacting with viral Gag through its B-box domain, independent of the E3 ligase activity and C-terminal B30.2 domain (34). More recently, several TRIMs have been shown to positively or negatively regulate innate immune signaling pathways. TRIM25 interacts with retinoic acid inducible gene-I (RIG-I), a cytoplasmic viral pathogen recognition receptor, through its B30.2 domain and promotes the ubiquitination of RIG-I, which is essential for downstream signaling to induction of type I interferons (IFNs) (9). Interestingly, the NS1 protein of influenza virus, a well-known IFN antagonist, associates with TRIM25 and inhibits its E3 ligase activity towards RIG-I ubiquitination (7), demonstrating the importance of TRIM25 in antiviral innate immunity. On the other hand, mouse TRIM30α associates with TAK1 and promotes the degradation of TAB2 and TAB3, leading to inhibition of TRAF6 ubiquitination and subsequent termination of Toll-like receptor signaling (28). TRIM21 has been reported to interact with and ubiquitinate IRF8 and IRF3, which regulates the transcriptional activity of IRF8 and stability of IRF3, respectively (10, 14). Despite recent advances in understanding the function of TRIMs and their emerging roles in innate immunity, only a small number of TRIMs have been shown to defend off viruses, and the precise mechanisms of action for most known antiviral TRIMs are still unclear (21). It is expected that the number of TRIMs having antiviral activities will continue to grow.

Bovine viral diarrhea virus (BVDV), along with classical swine fever virus of pigs and border disease virus of sheep, comprise the genus *Pestivirus* within the family *Flaviviridae*. Pestiviruses cause respiratory, digestive and reproductive problems in domestic ruminants worldwide that result in high economic losses. As with other flaviviruses, pestiviruses are small enveloped viruses that possess a positive polarity, single-stranded RNA genome. Upon infection of host cells, the pestivirus genomic RNA is translated into a single polyprotein which is
subsequently processed into 11-12 structural and nonstructural (NS) proteins. Similar to the closely related hepatitis C virus (HCV) and other classical flaviviruses, the pestivirus NS proteins are responsible for assembly of viral replication complexes on cytoplasmic membranes, while the structural proteins make up the virions. Unique to pestivirus encoded proteins is a small N-terminal protease (Npro), a papain-like cysteine protease that directs its self-cleavage off the viral polyprotein (25). Npro is dispensable for pestivirus replication of in vitro, but it is critical for pestivirus counteraction of IFN antiviral response. We and others have shown that BVDV Npro targets IRF3, a transcription factor pivotal for control of type I IFN synthesis, for proteasomal degradation (5, 11). Although the underlying mechanism remains elusive, Npro induced degradation of IRF3 requires cellular ubiquitin conjugation system, as inactivation of the E1 ubiquitin-activating enzyme prevents Npro-induced IRF3 loss (5). In our efforts to understand how BVDV Npro promotes polyubiquitination and subsequent degradation of IRF3, we have identified TRIM56 as an interaction partner of Npro. Initially speculating that TRIM56 may be the E3 ubiquitin ligase involved in the Npro-IRF3 interplay, we have unexpectedly found that TRIM56 is an antiviral host factor against BVDV. The antiviral effect is specific for BVDV as we found TRIM56 had no effect on replication of vesicular stomatitis virus (VSV) and HCV. We report TRIM56 inhibits BVDV propagation by acting on intracellular viral RNA replication. Furthermore, we provide evidence that the antiviral function of TRIM56 depends both on its E3 ubiquitin ligase activity and on the integrity of its C-terminal region, but is not attributed to a general augment of IFN response. Our study adds TRIM56 to the list of antiviral TRIMs and provides novel insights in understanding the antiviral mechanisms of TRIM56.

Materials and methods
Cells. HEK293, 293FT, human hepatoma Huh7 and Huh7.5, human monocytic leukemia THP1 and African green monkey kidney Vero cells were cultured by conventional techniques. MDBK cells were cultured similarly except that horse serum was used in place of fetal bovine serum. HeLa-FHNpro cells stably expressing Flag- and HA-tandem tagged BVDV Npro were cultured as described (36). HeLaNpro-25 is a tet-regulated cell line that conditionally expresses myc-tagged Npro (5). 293-Npro cells were generated by stable transduction of HEK293 with a replication-incompetent retroviral vector encoding Flag-tagged Npro (pCX4pur-FlagNpro), followed by selection with puromycin. MDBK and Huh7 cells stably expressing WT and various mutant forms of Flag-tagged TRIM56 were created by infection with replication-incompetent retroviral vectors that encode WT or mutant TRIM56 in pCX4bsr backbone (see details below), followed by stable selection with blasticidin. MDBK cells stably expressing WT (BK-F3) and N-terminal 133aa-deleted (BK-F3DN133) human IRF3 were derived from MDBK cells infected with replication-incompetent retroviral vectors that encode Flag- and HA-tandem tagged, human IRF3 or IRF3DN133 in pCX4pur backbone, followed by stable selection with puromycin.

Viruses, replicons and viral replication assays. VSV (Indiana strain) and cytopathic BVDV (NADL strain) stocks were propagated in Vero and MDBK cells, respectively. The genotype 2a HCV JFH1 virus was produced and propagated in Huh7.5 cells as described (35, 37). For virus infection, the indicated viral inoculum was incubated with cells in DMEM + 2\% FBS at the indicated m.o.i. in a humidified 37°C CO2 incubator. One hour (for VSV and BVDV) or 6 hours (for HCV) later, the viral inoculum was removed and infected cells were washed, refed with complete culture medium and allowed to return to culture. At various time points post infection, cell-free culture supernatants were removed and stored at -80°C until they were evaluated for infectious virus titers by standard plaque (for VSV, in Vero cells) and TCID50 (for
BVDV and HCV, in MDBK and Huh7.5 cells, respectively) assays, as previously described (17, 37, 41). Viral titers were expressed as PFU/ml (for VSV) and TCID50/ml (for BVDV and HCV), respectively.

The genomic J6/JFH1 HCV RNA replicon encoding renilla luciferase (pFL-J6/JFH-5'C19Rluc2AUbi, hereafter referred to as J6/JFH1-RL) and the subgenomic noncytopathic (ncp) BVDV replicon encoding firefly luciferase (ncpNADL Jiv90-deltaS-luc, hereafter referred to as BVD39) were generous gifts from Charles Rice (15, 32). We generated the BVD39-NS2 replicon construct by deleting the Npro gene, 10 N-terminal residues of capsid, an extra Leu codon, 18 C-terminal residues of capsid, 9 N-terminal residues of Erns and 48 C-terminal residues of E2 coding sequences from the BVD39 replicon plasmid using standard mutagenesis techniques. HCV and BVDV replicon RNAs were synthesized from linearized replicon plasmid templates by T7 RNA polymerase-mediated in vitro transcription as described (15, 32). For measuring BVDV and HCV RNA replication, five million cells were transfected with 6 µg of in vitro transcribed ncpBVDV or J6/JFH1-RL HCV replicon RNAs by electroporation on a BioRad GenePulser XCell apparatus. The parameters used were 140 V, 500 µF and maximum resistance (exponential decay mode). After electroporation, cells were cultured in 12-well plates for the indicated time periods prior to cell lysis (from duplicated wells) in 1X passive lysis buffer (Promega) and measurement of Renilla (for J6/JFH1-RL RNA transfected cells) or Firefly (for ncpBVDV replicon RNA transfected cells) luciferase activities in cell lysates. The luciferase activity at 6 h post transfection (which represents direct translation of input replicon RNA) was set as the baseline for calculation of fold changes in luciferase activities at later time points, which were used to compare the rate of viral RNA replication.
Plasmids. Plasmids were generated by conventional PCR techniques and their identities validated by DNA sequencing. To construct the human TRIM56 (hereafter referred to as TRIM56) expression vector, pcDNA3.1-TRIM56-V5, cDNA encoding human TRIM56 was amplified by PCR from HeLa cDNA using primers, 5’-cgcggatccATGGTTTCCCACGGGTCCT-3’ (forward) and 5’-gacggtatcgatACTGTCCGGAGAACGGAC-3’ (reverse), and subsequently ligated into pcDNA3.1/V5-His-TOPO (Invitrogen). To construct the bovine TRIM56 (hereafter referred to as boTRIM56) expression vector, pEF6-boTRIM56-V5, cDNA encoding boTRIM56 was amplified by PCR from MDBK cDNA using primers, 5’-cgcggatccATGGTTTCCCAGGGCTCCT-3’ (forward) and 5’-gacggtatcgatACTGTCAAGAGGGCGGAC-3’ (reverse), and subsequently ligated into pEF6/V5-His-TOPO (Invitrogen). The TRIM56 RING mutants (C24A and CC21/24AA) and various deletion mutants were generated from pcDNA3.1-TRIM56-V5 by QuikChange site-directed mutagenesis (Stratagene). The mutagenesis primers used are listed in Table 1. N-terminally and C-terminally GFP-tagged TRIM56 constructs (GFP-TRIM56 and TRIM56-GFP) were constructed in pEGFP-N1 and pEGFP-C2 (both from Clontech) backbones, respectively. To generate retroviral expression vectors for WT boTRIM56, WT and various mutant forms of TRIM56, the boTRIM56 and various TRIM56 cDNA fragments were excised from pEF6-boTRIM56-V5 and pcDNA3.1-derived TRIM56-V5 plasmids and ligated into pCX4bsr in a way that they will be expressed as proteins fused to a C-terminal Flag tag.

34AIRESneo encoding N-terminally Flag-tagged HCV NS3/4A was constructed from HCV-N (2) sequence in pBICEP-CMV-1 backbone (Sigma). cDNA expression plasmids for BVDV NS4A, NS4B and NS5B were constructed from the BVD39 replicon sequence and ligated in frame with downstream myc-6Xhis tags into pEF1/Myc-His (Invitrogen). Myc-tagged BVDV
NS3, NS3/4A, NS2-3 and NS5A constructs (ncp Nose strain) were generous gifts from Hiromi Akashi (38). pIRES-V5-TRIM25 (8) and p3XFLAG-Ub (6) were gifts from Jae Jung and Susan Baker, respectively. pcDNA6-mycNpro (WT, L8P and C69A mutants) have been described (5).

RNAi. A shRNA construct targeting boTRIM56 (pLKO.1pur-boT56-097shRNA) was constructed in the pLKO.1-TRC cloning vector (Addgene) using the following oligonucleotides, 5’-ccggCGCGCGGCTCTATCTCATCAActcgagTTGATGAGATAGAGCCGCGCGtttttg-3’ (forward, boTRIM56 sequence in uppercase letters) and 5’-aattcaaaaaCGCGCGGCTCTATCTCATCAActcgagTTGATGAGATAGAGCCGCGCG-3’ (reverse). The TRIM56 shRNA in pLKO.1puro vector (pLKO.1puro-T56-097shRNA) was purchased from Openbiosystems (TRCN0000073097), in which the TRIM56 target sequence was CGCACGGCTCTATCTCATCAA. To generate the TRIM56 shRNA vector (pRevTRE-T56-097shRNA) that allows selection of transfected cells with Hygromycin, the U6 promoter-huTRM56 shRNA cDNA cassette was excised from pLKO.1puro-T56-097shRNA by EcoRI (polished to blunt end) and Clal digestion and ligated into pRevTRE (Clontech) which was digested with XhoI (polished to blunt end) and Clal.

For stable knockdown of boTRIM56, MDBK cells were transfected with linearized pLKO.1pur-boT56-097shRNA vector and selected in medium containing puromycin (5 µg/ml). For stable knockdown of TRIM56 in HeLa-FHNpro cells, cells were transfected with linearized pRevTRE-T56-097shRNA construct and selected with Hygromycin (200 µg/ml). After 2-3 weeks, individual cell colonies were picked, expanded, and screened for boTRIM56 and TRIM56 expression by quantitative real time PCR (for MBDK boTRIM56 knockdown clones) and/or western blot (for HeLa-FHNpro TRIM56 knockdown clones).
For transient knockdown of TRIM56 in 293-Npro cells, two synthetic Stealth siRNAs (Invitrogen) were used. The siRNA target sequences were: #1, AGTTCAAAGGCAGGCTCAAGTCAAT; #2, CCACGTTGGAGGTATAATGGAA.

RT-PCR. Total cellular RNA were extracted from cells grown in 60-mm culture dishes following indicated treatments using TRIzol (Invitrogen), treated with DNase I to remove potential genomic DNA contamination, and reverse-transcribed to cDNA using MMLV reverse transcriptase (Promega) as per the manufacturer’s recommendations.

For semiquantitative RT-PCR, the following primers were used: human/bovine TRIM56, 5'- GCTCTATCTCATCAACC-3’ (forward) and 5’-GTGGATGGTSCCGTTACTGAG-3’ (reverse); human RIG-I (16); human GAPDH (Clontech); boGAPDH, 5’-CAAGTCAACGGCAGCTCAA-3’ (forward) and 5’-TGGTCATAAGTCCTCCACGAT-3’ (reverse).

Quantitative real time PCR was performed using iQ SYBR Green Supermix (Bio-Rad) on an iCycler IQ5 realtime PCR machine (Bio-Rad). The following primers were used to detect human/bovine TRIM56, 5’-CTGCTTGGMGACTTCCTGAC-3’ (forward) and 5’-GTGGATGGTSCCGTTACTGAG-3’ (reverse). The relative abundance of each target was obtained by normalization with endogenous 28S rRNA or β-actin (4).

IFN treatment, virus infections, and IFN-β promoter assay. Where indicated, cells were transfected with poly-I:C or poly-dA:dT (both from GE Health), incubated with 500 U/ml of recombinant human IFN-α in culture medium or infected with 50-100 hemagglutinin units/ml of Sendai virus (SeV, Cantell strain, Charles River Laboratories) for 16 h, or infected with VSV or cytopathic BVDV NADL at the indicated m.o.i. for the indicated time periods (5, 37, 41). IFN-β promoter activities were determined by co-transfecting cells with IFN-β-Luc and pRL-TK.
Affinity purification of Npro-associated cellular proteins. Npro-associated cellular proteins were purified from HeLa-FHNpro cells that stably express N-terminal Flag/HA tandem-tagged BVDV Npro (36). Cells grown in thirty-five 150mm-dishes were lysed in a buffer containing 50 mM HEPES (pH 7.4), 1.5 mM EDTA, 150 mM NaCl, 10% Glycerol, 10 mM NaF, 1 mM Na\textsubscript{3}VO\textsubscript{4}, 0.5 mM DTT, 1% Triton X-100 and protease inhibitor cocktail (Sigma), clarified by centrifugation, and immunoprecipitated with anti-Flag M2 agarose (Sigma). The bound proteins were eluted with Flag peptide, fractionated on 4-12% SDS-PAGE, and stained by Coomassie blue using a Colloidal Blue staining kit (Invitrogen). Protein bands were excised from gel and analyzed on a MALDI-TOF/TOF mass spectrometer.

Immunoprecipitation and immunoblots. Cellular extracts were prepared and subjected to IP and/or immunoblot analysis as previously described (5). The following polyclonal (pAb) and monoclonal (mAb) antibodies were used: rabbit anti-TRIM56 (Bethyl Labs); rabbit anti-TRIM56937-2 (generated by immunizing rabbits with a KLH-coupled peptide, RAGWYDEEARERQAAQ); anti-myc tag 9B11 mAb (Cell Signaling Tech); anti-V5 mAb (Invitrogen); rabbit anti-FLAG pAb, anti-FLAG M2 and anti-actin mAbs (Sigma) and peroxidase-conjugated secondary anti-rabbit and anti-mouse pAbs (Southern Biotech). Protein bands were visualized using enhanced chemiluminescence (Millipore), followed by exposure to X-ray films.

Confocal imaging. HeLa Npro-25 cells induced for myc-Npro expression were cultured on LabTek chamber slides and transiently transfected with GFP-TRIM56 or TRIM56-GFP vector. Two days later, cells were fixed in 4% paraformaldehyde in PBS for 20 min, permeabilized with
0.25% Triton X-100 for 10 min and subsequently incubated with anti-myc mAb, washed in PBS, followed by incubation with Texas Red-conjugated anti-mouse IgG (Southern biotech). Slides were counterstained with DAPI and examined under a Zeiss LSM-510 laser scanning confocal microscope within the Department of Microbiology, Immunology and Biochemistry at the University of Tennessee Health Science Center.

Results

Identification of TRIM56 as a cellular protein that associates with BVDV \(N^{\text{pro}} \). To explore the mechanism of pestivirus \(N^{\text{pro}} \)-mediated proteasomal degradation of IRF3, we studied cellular proteins associated with BVDV \(N^{\text{pro}} \) in HeLa-FH\(N^{\text{pro}} \) cells that stably express FLAG- and HA-tandem tagged BVDV \(N^{\text{pro}} \) (FH-N\(N^{\text{pro}} \)) (36). As described previously (36), these cells expressed high levels of FH-N\(N^{\text{pro}} \) and had no detectable IRF3 protein when compared with control HeLa cells (Fig. 1A, compare lanes 1 vs 3). Treatment of epoxomicin, a potent inhibitor of the proteasome, stabilized IRF3 protein in HeLa-FH\(N^{\text{pro}} \) cells (lanes 2 vs 1). We purified \(N^{\text{pro}} \)-containing complexes by immunoprecipitation (IP) with anti-FLAG M2 monoclonal antibody from HeLa-FH\(N^{\text{pro}} \) cells and as a negative control, from parental HeLa cells. The immunoprecipitated materials were eluted from the matrix with FLAG peptide, fractionated on SDS-PAGE, and visualized by Coomassie blue staining (Fig. 1B). Proteins specifically associated with FH-N\(N^{\text{pro}} \) (lane 3) were excised and their identities were determined by mass spectrometry (Table S1). In parallel, only a few polypeptides were purified from control HeLa cells by anti-FLAG IP (Fig. 1B, lane 2), and none was found to overlap with those proteins co-immunoprecipitated with FH-N\(N^{\text{pro}} \) as determined by mass spectrometry (data not shown). The cellular proteins associated with FH-N\(N^{\text{pro}} \) included TRIM56, cytoskeleton proteins (\(\beta \)-actin and
β-tubulin), chaperone proteins (hsp27 and hsc70), KIAA0913, DNA-PK, among many others (Fig. 1B and Table S1). Because the TRIM family proteins are proposed to represent a class of ‘single protein RING finger’ E3 ubiquitin ligases (18), we hypothesized that TRIM56 may be involved in the interplay between N\(^\text{pro}\) and IRF3 and thus focused our studies on characterizing the functions of TRIM56.

To confirm the TRIM56-N\(^\text{pro}\) interaction, we performed co-IP experiments in 293T cells transiently co-expressing V5-tagged TRIM56 and FH-N\(^\text{pro}\). Cells co-expressing V5-tagged TRIM25 and FH-N\(^\text{pro}\) were used as a control for specificity (Fig. 1C). After IP with anti-V5, FH-N\(^\text{pro}\) was found to form a complex with TRIM56-V5 (regardless of whether TRIM56 was of human or bovine origin) but not with TRIM25-V5. Inhibition of the proteasome had little effect on the association of N\(^\text{pro}\) with TRIM56. To examine whether N\(^\text{pro}\) co-localizes with TRIM56, we transiently transfected GFP-TRIM56 or TRIM56-GFP constructs (in which GFP was tagged to the N- and C-terminus of TRIM56, respectively) into HeLa Npro-25 cells stably expressing myc-tagged N\(^\text{pro}\) (5) and examined the subcellular localizations of N\(^\text{pro}\) and TRIM56 by fluorescence confocal microscopy (Fig. 1D). While myc-N\(^\text{pro}\) resided both in cytoplasm and nucleus, GFP-tagged TRIM56 distributed exclusively in the cytoplasm. Importantly, myc-N\(^\text{pro}\) co-localized with GFP-TRIM56 and TRIM56-GFP extensively in cytoplasm. Collectively, these data corroborate our earlier finding that TRIM56 is an interaction partner of BVDV N\(^\text{pro}\).

The C-terminal portion of TRIM56 protein mediates the interaction with N\(^\text{pro}\). Both the human and bovine TRIM56 proteins comprise 755 amino acids (aa), with 87% aa identity between them. Like other TRIM family proteins, TRIM56 from either species has the N-terminal signature tripartite motifs, RING, B-box and Coiled-coil domains. However, neither human nor bovine TRIM56 has sequence homology to any known domain structures in its C-terminal
portion (Fig. S1 and Fig. 2A). Thus, TRIM56 belongs to the C-V subfamily of TRIMs (21, 29). To determine which part of TRIM56 mediates its interaction with Npro, we generated an array of human TRIM56 deletion mutants (Fig. 2A) and determined their abilities to interact with Npro by co-IP (Fig. 2B-C). We found that deletion of the C-terminal half of TRIM56 (∆369-742, lane 5 in Fig. 2B) abrogated the ability of TRIM56 to interact with Npro, while deletion of RING (lane 3 in Fig. 2B), B-box (lane 4 in Fig. 2B), or both (lane 4 in Fig. 2C), or the Coiled-coil domain (lanes 5-6 in Fig. 2C) failed to do so. To determine which part of the C-terminal sequence of TRIM56 is critical for its association with Npro, we conducted a more fined internal deletion analysis of TRIM56 starting from aa residue 290, producing 6 mutants with each removing approx. 60-90 aa toward the C-terminus (Fig. 2A, ∆290-353, ∆355-433, ∆431-519, ∆515-610, ∆621-695 and ∆693-750). Co-IP analysis demonstrated that the aa 431-750 region of TRIM56 mediates the association with Npro, as deletion any part of this region by as few as 57 aa abrogated the TRIM56-Npro interaction (Fig. 2C, lanes 9-12). We conclude from these experiments that the integrity of the C-terminal region of TRIM56 is critical for its association with pestivirus Npro. It should be noted that a large N-terminal deletion mutant (∆N363, lane 7 in Fig. 2B), in which the tripartite motif was completed deleted, also no longer associated with Npro. We speculate that this large N-terminal deletion may affect the overall folding of TRIM56 protein, thereby abrogating the TRIM56-Npro interaction.

TRIM56 has RING-dependent E3 ubiquitin ligase activity and self-associates in cells.

Many, but not all of the TRIM proteins have intrinsic E3 ubiquitin ligase activity, which is dependent on the N-terminal RING domain and characterized by the ability to mediate the transfer of ubiquitin both to heterologous substrates and to themselves (18). When co-expressed with Flag-Ub, TRIM56-V5 was expressed as a smear of high molecular mass proteins that
reacted with anti-Flag in addition to a product of TRIM56’s predicted mass (Fig. 3A, lane 3), a phenomenon which was enhanced following inhibition of the proteasome by epoxomicin (lane 4). This suggests TRIM56 promotes ubiquitination of itself. Mutation of the conserved cysteine residues within the RING domain of TRIM56 completely abrogated its ability to induce self-ubiquitination (lanes 5-6, Cys 24 to Ala; and lanes 7-8, both Cys 21 and Cys 24 substituted to Ala), confirming that the E3 ubiquitin ligase activity of TRIM56 depends on its RING domain.

The TRIM proteins are known to homo-multimerize through their Coiled-coil domains, thereby identifying specific cellular compartments (24). We found that TRIM56-V5 associated with TRIM56-Flag in co-IP experiments, regardless of whether the RING-domain was intact (WT) or mutated (CC21/24AA) (Fig. 3B, lanes 2 and 4). As a control for specificity, TRIM56-V5 (WT or CC21/24AA) did not form a complex with Flag-tagged NS3/4A from HCV (lanes 3 and 5). These data indicate that like other TRIMs, TRIM56 also oligomerizes and such activity is separated from its E3 ubiquitin ligase activity.

TRIM56 does not mediate Npro-induced IRF3 loss, nor does it target Npro for proteasomal degradation. Because TRIM56 is a RING-type E3 ligase associated with Npro, we set out to determine whether TRIM56 is involved in Npro-mediated proteasomal degradation of IRF3. To test this, we stably transfected a TRIM56 shRNA into HeLa-FHNpro cells and analyzed IRF3 protein abundance in a number of cell clones in which expression of the endogenous TRIM56 was downregulated to varying extent (Fig. 4A, lanes 2-10). Regardless of TRIM56 protein levels (low to undetectable) in these cell clones, IRF3 protein remained undetectable (Fig. 4A), suggesting TRIM56 is not essential for Npro-induced IRF3 degradation. Consistent with this, overexpression of TRIM56 in HEK293 cells did not reduce IRF3 protein abundance (Fig. 4B).
BVDV Npro is a short-lived protein with a half-life of less than 1 h (Fig. 4C), a phenomenon similar to that has been recently described for Npro from classical swine fever virus (27). Inhibition of the proteasome by epoxomicin substantially stabilized the ectopically expressed Npro protein, regardless of whether Npro was of WT sequence or bore mutations that abrogated the ability of Npro to degrade IRF3 (L8P and C69A) (5) (Fig. 4D). We considered the possibility that TRIM56 may interact with and promote Npro degradation through the proteasome. However, overexpression of TRIM56 did not reduce the protein abundance of co-expressed Npro (Fig. 4E), nor did it enhance Npro polyubiquitination (data not shown). Furthermore, silencing endogenous TRIM56 expression did not upregulate Npro protein level in HEK293 cells stably expressing Flag-tagged Npro (293-Npro) (Fig. 4F). Collectively, we conclude that TRIM56 is not the E3 ubiquitin ligase recruited by Npro to degrade IRF3, nor does it contribute to Npro protein turnover by the proteasome.

Ectopically expressed TRIM56 exerts antiviral activity against BVDV replication by means of its E3 ligase activity. Although we did not find TRIM56 to be involved in regulating the protein abundances of IRF3 and Npro, its association with a BVDV protein (Npro) prompted us to determine whether TRIM56 has any effect on BVDV replication. To this end, we generated MDBK cells stably expressing WT or the E3 ligase-deficient RING mutant forms (C24A and CC21/24AA) of human TRIM56, or the empty vector (Bsr), respectively. Immunoblot analysis demonstrated the WT and mutant TRIM56 proteins in these cells were expressed at comparable levels (Fig. 5A, lanes 2-4). When infected with the cytopathic (cp) NADL strain of BVDV (MOI=0.01), cells expressing WT TRIM56 consistently released 1- to 1.5-log less infectious progeny virus to culture medium than did Bsr cells during the 48-hour observation period, while the virus yields were undistinguishable between Bsr cells and cells expressing the C24A or...
CC21/24AA mutant TRIM56 (Fig. 5B). In agreement with this, WT TRIM56-expressing MDBK cells consistently had substantially less CPE and better cell survival than did Bsr cells upon infection with cp BVDV NADL at increasing MOIs (Fig. 8C). These data suggest that TRIM56 is an antiviral cellular factor against BVDV infection, and that the anti-BVDV activity of TRIM56 depends on its E3 ligase activity.

TRIM25 positively regulates RIG-I signaling via ubiquitination of the CARD domain of RIG-I (9), thereby enhancing type I IFN antiviral response. We considered the possibility that the antiviral effect of TRIM56 may result from a general augment of IFN response. To investigate this possibility, we studied the effects of TRIM56 overexpression on viral activation of the IFN-β promoter and on replication of VSV, a Rhabdovirus extremely sensitive to IFN’s antiviral action. We found Sendai virus (SeV) infection strongly activated IFN-β promoter in HEK293 cells overexpressing WT TRIM56, as it did to similar extent in control HEK293 cells and in cells overexpressing the E3 ligase-null CC21/24AA mutant TRIM56 (data not shown). VSV replicated with similar efficiency among MDBK cells expressing WT, C24A, CC21/24AA TRIM56 and the Bsr vector (Fig. 5C), in contrast to compromised BVDV propagation selectively in cells expressing WT TRIM56 (Fig. 5B). We further studied the effect of TRIM56 overexpression on replication of HCV, a flavivirus that is closely related to BVDV. Stable, ectopic expression of WT or the CC21/24AA RING mutant forms of TRIM56 in HCV-permissive hepatoma Huh7 cells (Fig. 5D) had little effect on propagation of the cell culture derived HCV JFH1 virus (Fig. 5E), indicating that TRIM56 does not restrict HCV replication. Taken collectively, the TRIM56 E3 ubiquitin ligase specifically inhibits BVDV infection, and such an antiviral effect is not attributed to a general augment of IFN antiviral response.
TRIM56 inhibits BVDV replication by targeting an intracellular viral RNA replication step. To determine how TRIM56 restricts BVDV infection, we investigated the impact of TRIM56 on replication of a bicistronic, subgenomic BVDV RNA replicon, BVD39 (Fig. 6A, upper panel). This replicon RNA self-replicates continuously in cytoplasm upon transfection into MDBK cells, expressing luciferase as a measure of intracellular BVDV RNA replication (15). The BVD39 replicon replicated efficiently in the control MDBK-Bsr cells as well as in MBDK cells stably expressing the C24A or CC21/24AA mutant TRIM56, resulting in an increase in luciferase activity over 72 h followed by a plateau later. In contrast, replication of this BVDV RNA was blunted in cells expressing WT TRIM56 (Fig. 6B). Stable, ectopic expression of boTRIM56 also substantially reduced cellular permissiveness for the BVD39 replicon compared with MDBK-Bsr cells (Fig. 6C), confirming that boTRIM56, like its human homolog, also suppresses BVDV RNA replication when ectopically expressed. By contrast, ectopically expressed TRIM56 (WT, or C24A and C21/24AA mutants) had no demonstrable effect on replication of a genome-length J6/JFH1 HCV RNA replicon encoding renilla luciferase (J6/JFH1-RL, Fig. 6A) in HCV-permissive Huh7 cells (Fig. 6D). These results suggest that TRIM56 specifically restricts BVDV infection by targeting an intracellular BVDV RNA replication step.

The endogenous bovine TRIM56 restricts BVDV replication. Next, we determined whether the endogenous boTRIM56, expressed at physiological levels, also restricts BVDV replication. We stably transfected MDBK cells with a shRNA construct that targets specifically the boTRIM56. Because neither the commercially available TRIM56 antibodies nor our custom-made one could detect the endogenous boTRIM56 protein (data not shown), we utilized realtime RT-PCR to screen MDBK cell clones with efficient knockdown of boTRIM56 mRNA. Two
individual clones, designated T56i#2 and T56i#3, respectively, were selected for further analysis because they expressed only ~20% TRIM56 mRNA compared with the parental MDBK cells (Fig. 7A). Both T56i cell clones responded similarly to SeV infection or transfected poly-I:C in induction of two well-known IFN stimulated genes (ISGs), ISG15 and MxA, when compared with control MDBK cells (Fig. 7B), indicating that knockdown of TRIM56 did not impair type I IFN response in these cells. We found that both T56i#2 and T56i#3 cells were substantially more permissive than control MDBK cells in supporting the replication of BVD39 replicon, allowing a more earlier, efficient BVDV RNA replication than the latter (Fig. 7C). Taken together, these data confirms the biological relevance of TRIM56’s antiviral activity against BVDV.

The integrity of the C-terminal region of TRIM56, but not the TRIM56-Npro interaction, is critical for TRIM56’s antiviral function. TRIM5α depends on its C-terminal B30.2/SPRY domain for its antiviral activity against HIV (30). Although the C-terminal region of TRIM56 does not have known domain structures, it mediates the interaction of TRIM56 with Npro (Fig. 2), suggesting this region is critical for TRIM56’s ability to interact with viral, and possibly, cellular proteins. We determined whether the C-terminal portion of TRIM56 is also critical for its antiviral function. To this end, we generated MDBK cells stably expressing a mutant TRIM56 lacking the aa 693-750 at the C-terminus (Fig. 8A, lane 5). Although its expression level was higher than that of WT TRIM56, this TRIM56 mutant was no longer able to inhibit BVDV propagation (Fig. 8B) or replication of the BVD39 RNA replicon (Fig. 8D). It also failed to protect cells from BVDV-induced CPE (Fig. 8C). Since the ∆693-750 mutant also lost its ability to interact with Npro (lane 12 in Fig. 2C), we wondered whether the TRIM56-Npro interaction determines TRIM56’s antiviral activity against BVDV. To investigate this, we determined how TRIM56 affected the replication of a BVDV RNA replicon that does not encode
Npro, BVD39-NS2 (Fig. 6A, middle panel). We found that WT TRIM56 still restricted the replication of the BVD39-NS2 replicon, while the Δ693-750 mutant failed to do so (Fig. 8E). Similarly, we found a TRIM56 mutant lacking aa 621-695 (in which the deletion was close to the C-terminus but upstream of the Δ693-750 deletion) also lost the antiviral activity against the BVD39-NS2 replicon when stably expressed in MDBK cells (Fig. 8F, see lane 4 in Fig. 8A for characterization of its expression). We conclude from these experiments that the C-terminal structural integrity, but not the TRIM56-Npro interaction, is important for the antiviral activity of TRIM56 against BVDV.

TRIM56 does not promote the degradation of BVDV NS proteins required for viral RNA replication. Because our data suggested that the E3 ubiquitin ligase activity of TRIM56 was required for its antiviral effect against BVDV RNA replication, we considered the possibility that TRIM56 may target one or more BVDV NS proteins required for BVDV RNA replication, for degradation. To test this hypothesis, the individual BVDV NS proteins were ectopically co-expressed with excessive WT or the E3 ligase-deficient CC21/24AA mutant TRIM56 (at a ratio of 1:6) in 293FT cells and their protein abundances were determined by immunoblot analysis (Fig. 9). We found the BVDV NS2-3, NS3, NS4A, NS4B, NS5A and NS5B proteins were expressed at comparable levels in cells co-expressing WT or the CC21/24AA mutant TRIM56, suggesting that they are not targeted by TRIM56 E3 ligase for degradation. Therefore, other mechanism(s) of action is responsible for the antiviral effect of TRIM56 against BVDV.

TRIM56 is a ubiquitous protein whose expression is further up-regulated by IFN or virus infection. To determine the tissue distribution of TRIM56, we assessed the expression of human TRIM56 protein by multiple-tissue western blot (Fig. 10A). We found that TRIM56
protein was expressed ubiquitously in all human tissues examined, including brain, heart, small intestine, kidney, liver, lung, skeletal muscle, stomach, spleen, ovary and testis. In all tissues, TRIM56 was mainly expressed as a protein of approximately 81 kDa, which corresponds to the predicted molecular mass of human TRIM56 (arrow head). Of note, lung and stomach were among the organs with highest expression of TRIM56, while brain expressed the least but nonetheless detectable TRIM56 protein.

Many TRIM proteins are transcriptionally regulated by IFNs (3, 23). We found both the mRNA (Fig. 10B) and protein (Fig. 10C) levels of human TRIM56 were moderately upregulated by IFNα (~3 fold). IFN also upregulated boTRIM56 transcripts to similar extent in bovine cells (Fig. 10E, solid bar). To determine whether TRIM56 is induced by viruses, in particular, BVDV, we studied TRIM56 expression in MDBK cells stably overexpressing Flag- and HA-tandem tagged human IRF3 (BK-IRF3, lanes 1-3 in Fig. 10D). In BK-F3 cells, IRF3 protein was no longer degraded by Npro following BVDV infection because of its overexpression, allowing cells to mount IFN response to BVDV infection, as evidenced by the induction of bovine ISG15 (Fig. 10D, lane 3). This phenotype, however, was not observed in BK-F3DN133 cells (lanes 4-6 in Fig. 10D) that stably overexpressing an IRF3 mutant lacking the N-terminal 133 aa (lane 6). We found that TRIM56 mRNA was induced by 4- and 5.5-fold, upon infection with BVDV and SeV, respectively, in BK-F3 cells (Fig. 10E). Collectively, the ubiquitous tissue distribution of TRIM56 and its upregulation by IFN and viruses are consistent with the role for TRIM56 as an antiviral host factor.

Discussion
The TRIM family proteins have been recently recognized to have emerging roles in innate immunity against viral infections (21). Among the over 60 TRIM proteins known to be encoded by human and mouse genome, only a few have been characterized for their antiviral activities, and most of them target viruses of the Retroviridae family at different stages of viral life cycle (20, 21). In the current study we have identified TRIM56 as a novel player in antiviral innate immunity which acts specifically to inhibit the replication of BVDV, a positive-stranded RNA virus of pestivirus genus within the Flaviviridae family. We demonstrate that TRIM56 possesses RING-dependent E3 ubiquitin ligase activity and self-associates (Fig. 3), features demonstrated for other TRIM family E3 ligases (18, 24). When ectopically expressed, TRIM56 from either bovine or human species strongly and specifically suppressed BVDV replication (Figs. 5-6). Importantly, knockdown of endogenous TRIM56 rendered bovine cells substantially more permissive for BVDV replication (Fig. 7), confirming that the physiologic level of TRIM56 is able to execute the antiviral function. Furthermore, we have shown that both the E3 ubiquitin ligase activity and the integrity of the C-terminal part of TRIM56 are crucial for its antiviral activity against BVDV, as mutation of the conserved Cys residue(s) within the RING domain or deletion of as few as 57 aa in the C-terminal region abrogated TRIM56’s restriction on BVDV replication (Figs. 5, 6 and 8). To our knowledge, this is the first study that demonstrates the TRIM56 E3 ubiquitin ligase inhibits the replication of an RNA virus.

TRIM25 has been recently shown to promote IFN induction by ubiquitination of RIG-I (9), demonstrating an example that TRIM proteins can participate in innate immune signaling that nonspecifically augments antiviral responses. However, several lines of evidence suggest that the antiviral activity of TRIM56 against BVDV do not result from a general enhancement of IFN antiviral response. Firstly, ectopic expression of TRIM56 by itself did not enhance SeV-induced
IFN-β promoter, which activates the RIG-I pathway (39), in our experiments (data not shown). Because flaviviruses, including HCV which is a closely related virus to BVDV, are sensed by RIG-I in host cells to trigger IFN induction (13, 26), BVDV is likely to be recognized by RIG-I. Secondly, although MDBK cells overexpressing TRIM56 were substantially less permissive for BVDV replication than were cells expressing the control vector or the E3 ligase deficient TRIM56 mutants (Fig. 5B and 6B), no difference was seen among these cells with regards to their ability to support propagation of VSV (Fig. 5C), a virus routinely used for IFN antiviral activity assays. Thirdly, ectopic expression of TRIM56 or its RING mutants in HCV-permissive Huh7 cells had no appreciable effect on replication of HCV (Fig. 5E and 6D), which is sensitive to IFNs’ action in cell culture (17), indicating the antiviral activity of TRIM56 is virus-specific. Fourthly, stable knockdown of endogenous boTRIM56 in MDBK cells did not apparently affect SeV- or transfected poly-I:C-induced expression of ISG15 and MxA (Fig. 7B), suggesting the enhanced permissiveness for BVDV replication in the boTRIM56-knockdown MDBK cells (Fig. 7C) did not result from an impairment of induction of IFN response. Lastly, BVDV infection in MDBK cells does not induce detectable IFN response because of the rapid degradation of IRF3 by Npro (5).

While this manuscript was in preparation, Tshuchida and colleagues reported the identification of mouse TRIM56 as a regulator of dsDNA-mediated type I IFN induction in by screening a mouse cDNA library for genes that enhance intracellular dsDNA (poly-dA:dT) activated IFN-β promoter activity (33). They showed that TRIM56 interacted with and promoted the ubiquitination of STING (a.k.a., MITA/ERIS/MYPS), an adaptor protein essential for dsDNA induction of IFN (12, 31, 40). In their study transient knockdown of TRIM56 in HEK293 cells greatly reduced dsDNA induced IFN induction and to a less extent, attenuated
transfected poly-I:C induced responses. We did not observe much effect of TRIM56 stable knockdown in MDBK cells on SeV- and poly-I:C-induced ISG induction (Fig. 7B), indicating there may be cell-type specific differences in the role for TRIM56 in induction of IFN response. Interestingly, MDBK cells failed to upregulate ISG15 and MxA expression following transfection of dsDNA, although they responded robustly to SeV and transfected poly-I:C (Fig. 7B).

Our data indicate that TRIM56 targets BVDV propagation by suppressing intracellular viral RNA replication, as it inhibited the replication of subgenomic BVDV RNA replicons that bypass the viral entry and uncoating steps and also do not lead to packaging and release of progeny viruses (due to lack of viral structural genes). However, we can not exclude the possibility that TRIM56 may also act on these early and late steps of BVDV life cycle, as demonstrated for other antiviral TRIMs in restricting retroviruses (20, 21). As in the case of HCV and other flaviviruses, pestiviruses replicate their RNAs on cytoplasmic membranes (25). We found TRIM56 is expressed exclusively in cytoplasm (Fig. 1D), a subcellular location which is consistent with TRIM56’s action on BVDV RNA replication.

Previous studies on retroviral restriction factors have suggested distinct antiviral mechanisms of TRIMs in restricting different retroviruses. TRIM22 depends crucially on its E3 ligase activity for disrupting HIV particle production (1). However, TRIM5α fully relies on its C-terminal SPRY domain, but only partially on the E3 ligase activity for inhibiting HIV uncoating (30). By contrast, the B-box, but not the E3 ligase activity or the SPRY domain, is essential for restriction of murine leukemia virus release by TRIM15 (34). Our data show that TRIM56 depends on both the E3 ligase activity and C-terminal sequence integrity for its antiviral function against BVDV (Figs. 5, 6 and 8). However, when co-expressed with TRIM56, none of
the NS proteins essential for BVDV RNA replication (NS2 to NS5B) demonstrated any
reduction in abundance (Fig. 9), indicating they are not targeted by the TRIM56 E3 ligase for
degradation. Whether TRIM56 E3 ligase promotes posttranslational modification(s) of one or
more BVDV NS proteins and/or cellular factors to impair BVDV replication will require future
investigation.

What is the role of the C-terminal region in the antiviral action of TRIM56? Although this
portion of TRIM56 has no known domain structures, its integrity is crucial for TRIM56’s ability
to interact with N^{pro} and also to confer BVDV restriction. However, N^{pro} itself is not essential for
BVDV replication (25), and the anti-BVDV activity of TRIM56 does not rely on the TRIM56-
N^{pro} interaction, since replication of the BVD39-NS2 RNA replicon that does not encode N^{pro}
was still blunted upon TRIM56 overexpression (Fig. 8E-F). Conceivably, the TRIM56 C-
terminal region may mediate critical protein-protein interactions between TRIM56 and cellular
and/or viral proteins that determine viral fitness. Thus far, we have been unable to co-
immunoprecipitate TRIM56 with BVDV NS2-3, NS3, NS4A, NS4B, NS5A or NS5B (data not
shown). Alternatively, the C-terminal part of TRIM56 may bind to BVDV RNA and regulate
viral RNA replication directly. Of note, the SPRY domain, which is present in the C-terminal
region of many TRIMs (although not in TRIM56), has been proposed to bind RNA (22).

Examination of a wide variety of human tissues allowed us to demonstrate the ubiquitous
expression of TRIM56 protein (Fig. 10A). With the exception of brain in which TRIM56 level
was low, constitutive expression of TRIM56 was observed for all other tissues examined. Of
note, lung and stomach expressed the highest levels of TRIM56 protein. Because the respiratory
and digestive tracts are continuously exposed to pathogenic microorganisms in the outside
environment, it is reasonable to speculate that TRIM56 is evolutionally conserved to combat
with other viral pathogens in addition to BVDV. The observations that TRIM56 expression is upregulated by viruses or IFN (Fig. 10) (3, 33) provide further support for the notion that TRIM56 is an antiviral host factor.

What is the biological significance of the Npro-TRIM56 interaction? Interestingly, we reproducibly observed that the protein abundance of TRIM56 was profoundly lower in HeLa-FHNpro cells compared with control HeLa cells (Fig. 1A, compare lanes 1 vs. 3) and inhibition of the proteasome substantially increased TRIM56 level (compare lanes 1 vs 2) in HeLa-FHNpro cells. This suggests that Npro likely promotes proteasomal degradation of TRIM56, as it does for IRF3. Thus, not only is TRIM25 subjected to viral control (7), but TRIM56-mediated antiviral defense is also targeted for inhibition by virus-encoded proteins, and the degradation of TRIM56 by pestivirus Npro represents one such example.

Acknowledgement

We are grateful to Bo Xu and Robert English for assistance with TRIM56 antibody production and mass spectrometry analysis, respectively, and to Michael Whitt for assistance with confocal imaging. We also thank Charles Rice for providing HCV and BVDV replicon constructs, Hiroomi Akashi for BVDV NS expression vectors, Jae Jung for TRIM25 plasmid and Susan Baker for the Flag-Ub construct. This work was supported in part by NIH grant AI069285 to KL.

References

targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439-49.

Table 1. Primers used for mutagenesis of human TRIM56

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Primer Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ΔRING)</td>
<td>del2-71F</td>
<td>5'-ccttcgcggatatcgtgcttcataagcgaacatc-3'</td>
</tr>
<tr>
<td></td>
<td>del2-71R</td>
<td>5'-agttgcttctgacatgacgcatccggagcag-3'</td>
</tr>
<tr>
<td>B (ΔB-box)</td>
<td>del161-205F</td>
<td>5'-gttgatgagaggtctgatcagctgctcgatc-3'</td>
</tr>
<tr>
<td></td>
<td>del161-205R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>C (ΔCoiled-coil)</td>
<td>del211-363F</td>
<td>5'-gtggtatgagaggtctgagcagctgctcgatc-3'</td>
</tr>
<tr>
<td></td>
<td>del211-363R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>D (Δ369-742)</td>
<td>del369-742F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del369-742R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>E (Δ77-742)</td>
<td>del77-742F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del77-742R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>F (ΔN363)</td>
<td>del363F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del363R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>G (ΔRING+B-box)</td>
<td>del2-205F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del2-205R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>H (Δ211-284)</td>
<td>del211-284F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del211-284R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>I (Δ290-353)</td>
<td>del290-353F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del290-353R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>J (Δ355-433)</td>
<td>del355-433F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del355-433R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>K (Δ431-519)</td>
<td>del431-519F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del431-519R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>L (Δ515-610)</td>
<td>del515-610F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del515-610R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>M (Δ621-695)</td>
<td>del621-695F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del621-695R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>N (Δ693-750)</td>
<td>del693-750F</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>del693-750R</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>C24A</td>
<td>TM56 C24A+</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>TM56 C24A-</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td>CC21/24AA</td>
<td>TM56 CC21/24AA+</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
<tr>
<td></td>
<td>TM56 CC21/24AA-</td>
<td>5'-cagccagctctctctgtgaaggtgagcactc-3'</td>
</tr>
</tbody>
</table>
Figure legends

Fig. 1. Identification of TRIM56 as a protein interaction partner of BVDV Npro. (A) Immunoblot analysis of Flag- and HA-tandem tagged Npro (FHN\textsubscript{pro}) (using anti-Flag antibody), IRF3 and TRIM56 expression in HeLa-FHN\textsubscript{pro} (lanes 1-2) and parental HeLa (lanes 3-4) cells. Where indicated, cells were treated with epoxomicin (100 nM) for overnight prior to cell lysis. Asterisks denote nonspecific bands, which demonstrate equal sample loading. (B) Protein complexes were purified from control HeLa and HeLa-FHN\textsubscript{pro} cells by anti-Flag affinity purification, fractionated on SDS-PAGE, followed by Coomassie blue staining. The protein bands for TRIM56, β-tubulin and FH-Npro (identified later by mass spectrometry) were indicated on the right. (C) Co-IP analysis of the interaction of FH-Npro with V5-tagged human (TRIM56) and bovine TRIM56 (boTRIM56) in co-transfected 293FT cells. TRIM25-V5 was used as a negative control for specificity of the Npro-TRIM56 interaction. Where indicated, cells were treated with epoxomicin overnight prior to cell lysis. Note that epoxomicin had no effect on the Npro-TRIM56/boTRIM56 associations. The input panel shows immunoblotting of 1/10 of the whole cell lysates used for IP. Note that the ectopically expressed FH-Npro was detected as a doublet in immunoblot analysis of the whole cell lysates. The upper band may represent mono-ubiquitinated FH-Npro. IB, immunoblot; Ig Hc, IgG heavy chain. (D) HeLa Npro-25 cells induced for Npro expression were transiently transfected with a vector encoding GFP-TRIM56 (left panels) or TRIM56-GFP (right panels) and subsequently fixed for immunostaining of Npro (using anti-myc antibody). The subcellular localizations of GFP-tagged TRIM56 and myc-Npro were examined by confocal microscopy.
Fig. 2. The C-terminal portion of TRIM56 is important for its association with Npro. (A) Schematic representation of human TRIM56 protein domains and the individual TRIM56 deletion mutants tested in this study. (B-C) Co-IP analysis of the association of FHNpro with V5-tagged, WT TRIM56 or the indicated TRIM56 mutant in co-transfected 293FT cells. In C, TRIM25-V5 was used as a negative control for interaction with FHNpro.

Fig. 3. TRIM56 is a RING-type E3 Ub ligase and self-associates. (A) HEK293 cells were cotransfected with Flag-Ub and pcDNA3.1, WT, C24A or CC21/24AA mutants TRIM56-V5, and mock-treated or treated with 50 nM epoxomicin. Cell lysates were subjected to IP with mAb anti-V5, followed by immunoblot analysis with mAb anti-V5 and anti-FLAG M2 (upper panels). Immunoblot analysis of whole cell lysates (input) for WT, C24A and CC21/24AA mutant TRIM56-V5 (using mAb anti-V5 antibody) and Flag-Ub (using rabbit anti-Flag) and actin is shown in lower panels. (B) Co-IP analysis of the interactions of TRIM56-Flag with TRIM56-V5 (lane 2), TRIM56-V5 with Flag-NS3/4A (lane 3, as a negative control), CC21/24AA TRIM56-Flag with CC21/24AA TRIM56-V5 (lane 4) and CC21/24AA TRIM56-V5 with Flag-NS3/4A (lane 5, as a negative control) in co-transfected 293FT cells. Cell lysates were immunoprecipitated with anti-Flag, followed by immunoblot analysis with anti-V5 mAb and anti-Flag mAb (upper panels). Immunoblot analysis of whole cell lysates (input) for WT and CC21/24AA mutant TRIM56-V5 (using mAb anti-V5) and WT and CC21/24AA mutant TRIM56-Flag and Flag-NS3/4A (using rabbit anti-Flag) and actin is shown in lower panels.

Fig. 4. TRIM56 does not regulate the protein abundances of IRF3 and BVDV Npro. (A) Knockdown of TRIM56 does not reverse Npro-induced IRF3 degradation. Immunoblot analysis
of IRF3, TRIM56 and actin in control HeLa cells (lane 1) and HeLa-FHNPpro-derived cell clones stably transfected with a TRIM56 shRNA (lanes 2-10). Asterisk denotes a nonspecific band. (B) Overexpression of TRIM56 does not reduce IRF3 protein level in transiently transfected HEK293 cells. (C) Immunoblot analysis of NPpro and actin in HeLa NPpro-25 cells induced for NPpro expression following treatment with cycloheximide (CHX, 75 ng/ml) for the indicated times. (D) Immunoblot analysis of NPpro and actin expression in 293FT cells cotransfected with Flag-Ub and myc-tagged WT, L8P or C69A mutant NPpro. Where indicated, cells were treated with epoxomicin (50 nM) plus a pancaspase inhibitor, ZVAD (40 μM). (E) Overexpression of WT or mutant TRIM56 does not regulate the protein level of co-transfected FH-NPpro in HEK293 cells. Empty pcDNA3.1 vector was supplemented to keep the total DNA transfected constant. Immunoblot of NPTII was shown to demonstrate equal transfection efficiency and sample loading. (F) Knockdown of endogenous TRIM56 does not regulate NPpro protein abundance in HEK293 cells stably expressing Flag-NPpro (293-Npro). Left panel shows immunoblot blot analysis of IRF3 and NPpro in control HEK293 and 293-Npro cells (mock-infected or infected with SeV). Right panel shows immunoblot analysis of TRIM56, NPpro and actin expression in 293-Npro cells mock-transfected or transfected with lipofectamine alone or lipofectamine complexed with a negative control siRNA or with individual siRNAs (#1 and #2) specifically targeting TRIM56.

Fig. 5. Ectopically expressed TRIM56 restricts BVDV replication in bovine kidney (MDBK) cells by means of its E3 Ub ligase activity. (A) Immunoblot analysis of ectopically expressed TRIM56 in MDBK cells stably expressing control vector (Bsr), WT (TRIM56) and RING mutant TRIM56 (C24A and CC21/24AA). Asterisk denotes a nonspecific band which demonstrates equal sample loading. (B) Progeny virus production in culture supernatants of
MDBK-Bsr, -TRIM56, -C24A and -CC21/24AA cells at various time points post infection with BVDV NADL (moi=0.01). Data shown were representative of three independently conducted experiments. (C) Progeny virus production in culture supernatants of MDBK-Bsr, -TRIM56, -C24A and -CC21/24AA cells at various time points post infection with VSV (moi=0.001). Data shown were representative of two independently conducted experiments. (D) Immunoblot analysis of TRIM56 expression (using anti-TRIM56) in parental Huh7 cells and Huh7 cells stably transduced with the control vector (Bsr), WT TRIM56 (TRIM56) or the TRIM56 RING mutants (C24A or CC21/24AA). (E) Progeny virus production in culture supernatants of Huh7-Bsr, -TRIM56 and -CC21/24AA cells at various time points post infection with HCV JFH1 virus (moi=0.05). At day 1, the infectious progeny virus titers were all below the detection limit (5 TCID_{50}/ml). Data shown were representative of two independently conducted experiments.

Fig. 6. TRIM56 inhibits BVDV infection by targeting intracellular viral RNA replication. (A) Schematic representation of the subgenomic ncp BVDV RNA replicons encoding firefly luciferase, BVD39 (which encodes N^{pro}, Y.M. Lee et al, J Virol 79: 3231) and BVD39-NS2 (which does not encode N^{pro}), and the genome-length J6/JFH1-RL HCV replicon encoding renilla luciferase (D. M. Tscherne et al, J Virol 80:1734-41). (B) Replication of the BVD39 replicon in transfected MDBK-Bsr, -TRIM56, -C24A and -CC21/24AA cells. Data shown represent the fold-increase in luciferase activity over that present at 6 h (which represent direct translation of input replicon RNA) in each cell type and were representative of two independently conducted experiments. (C) Left, replication of the BVD39 replicon in MDBK-Bsr cells and MDBK-boTRIM56 cells stably overexpressing boTRIM56. Data shown were representative of two independent experiments. Right, immunoblot analysis of ectopically
expressed boTRIM56 (using anti-Flag antibody) in MDBK-boTRIM56 cells (lane 2). MDBK-Bsr cells (lane 1) served as a negative control. (D) Replication of the J6/JFH1-RL HCV replicon in transfected Huh7, Huh7-Bsr, -TRIM56, -C24A and -CC21/24AA cells. Data shown represent the fold-increase in luciferase activity over that present at 6 h in each cell type and were representative of two independent experiments.

Fig. 7. The endogenous bovine TRIM56 restricts BVDV replication in MDBK cells. (A) Realtime RT-PCR analysis of boTRIM56 mRNA expression in parental MDBK and two MDBK cell clones stably transfected with a boTRIM56 shRNA (T56i#2 and T56i#3). (B) Effect of stable knockdown of boTRIM56 in MDBK cells on viral induction of type I IFN response. Parental MDBK and MDBK-T56i #2 and -T56i#3 cells were mock-treated, infected with SeV, or transfected with poly-I:C (pIC) or poly-dA:dT (pdAdT). Cells were lysed for immunoblot analysis of bovine ISG15, MxA and actin expression. Note that MDBK cells did not respond to transfected poly-dA:dT to induce ISG15 and MxA expression. (C) Replication of the BVD39 replicon in MDBK, and MDBK-T56i #2 and T56i#3 cells. Data shown were representative of two independent experiments.

Fig. 8. The C-terminal structural integrity is important for TRIM56’s antiviral function against BVDV. (A) Immunoblot detection of ectopically expressed TRIM56 in parental MDBK cells (lane 1) and MDBK cells stably expressing Bsr vector (lane 2), WT TRIM56 (lane 3) or the Δ621-695 (lane 4) and Δ693-750 (lane 5) mutant TRIM56. Asterisks denote nonspecific bands. (B) Progeny BVDV virus titers in culture supernatants of MDBK-Bsr, MDBK-TRIM56 and MDBK-Δ693-750 mutant cells at various time points post infection with cp BVDV NADL.
(moi=0.005). Data shown were representative of three independent experiments. (C) Duplicate wells of MDBK-TRIM56, MDBK-Δ693-750 mutant and MDBK-Bsr cells grown in a 96-well plate were infected with increasing MOIs (from right to left, 0.00003 through 1) of the cp BVDV NADL for 70 h prior to cell fixation and crystal violet staining. The very left column shows uninfected cells. The image shown was representative of two independent experiments. (D and E) Replication of the BVD39 (D) and BVD39-NS2 (E) replicons in MDBK-TRIM56 and MDBK-Δ693-750 mutant cells. Data shown were representative of three independent experiments. (F) Replication of the BVD39-NS2 replicon in MDBK-Bsr, MDBK-TRIM56 and MDBK-Δ621-695 mutant cells. Data shown were representative of three independent experiments.

Fig. 9. TRIM56 does not promote degradation of BVDV NS proteins. 293FT cells grown in 6-well plates were mock-transfected or cotransfected with 0.25 µg of the indicated myc- or myc-6XHis-tagged ncpBVDV NS protein construct and 1.5 µg of V5-tagged TRIM56 (WT or CC21/24AA mutant) vector. Cells were lysed and subjected to immunoblot analysis of the expression of BVDV NS proteins (using anti-myc antibody) and TRIM56 (using anti-V5 antibody). Asterisks denote nonspecific bands.

Fig. 10. TRIM56 is ubiquitously expressed and its expression is further upregulated by virus or IFN-α. (A) Expression of TRIM56 protein in various human tissues detected by anti-TRIM56 antibody using Human Tissues INSTA-Blot™ (Calbiochem). (B) Semiquantitative RT-PCR (left panel) and realtime PCR (right panel) assessment of TRIM56 mRNA abundance in HeLa cells mock-treated or stimulated with 500 U/ml of IFN-α for 16 h. RIG-I was used as a positive control for IFN treatment (left panel). (C) Immunoblot analysis of TRIM56 and RIG-I
expression in THP1 cells mock treated or stimulated with IFN-α. Similar results were obtained in HeLa cells (data not shown). (D) Stable retroviral transduction of IRF3, but not that of N-terminal 133aa deleted IRF3 (DN133), renders MDBK cells to upregulate boISG15 expression following BVDV infection. Cells were mock treated (lanes 1 and 4) or infected with SeV (lanes 2 and 5) or with BVDV (lanes 3 and 6) for 12 h prior to cell lysis and immunoblot analysis of the ectopically expressed, Flag- and HA-tandem tagged human IRF3 (FH-IRF3) or IRF3 DN133 (FH-IRF3DN133) (using anti-Flag antibody), bovine ISG15, SeV and BVDV NS3. Asterisk denotes a nonspecific band which demonstrates equal protein sample loading. (E) Semiquantitative RT-PCR (upper panel) and realtime RT-PCR (lower panel) analysis of boTRIM56 mRNA abundance in BK-F3 cells mock-treated, stimulated with 500 U/ml of IFN-α, or infected with cp BVDV NADL (moi=0.1) or SeV (50 HAU/ml) for 16 h.
Wang et al, Fig. 1

A

<table>
<thead>
<tr>
<th></th>
<th>FH-N<sup>pro</sup></th>
<th>HeLa</th>
<th>epoxomicin</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH-N<sup>pro</sup></td>
<td>![Image]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRF3</td>
<td>![Image]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIM56</td>
<td>![Image]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 2 3 4

B

<table>
<thead>
<tr>
<th>MW</th>
<th>HeLa</th>
<th>FH-N<sup>pro</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Image]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

- + - - - - - - TRIM25-V5
- - - + + - - TRIM56-V5
- - - - + + + + boTRIM56-V5
- + + + + + + FH-N^{pro}
- - - + + + + epoxomicin

D

IP: V5
IB: V5
IB: Flag
Input

D (cont.)

GFP-TRIM56
TRIM56-GFP
merge
merge
Wang et al, Fig. 3
Wang et al, Fig. 4

A HeLa, HeLaFHpro, T56i clones

B HEK293

C Hrs post-CHX

D myc-Npro

E TRIM56-V5

F SeV
Wang et al, Fig. 5
Wang et al, Fig. 6

A

BVD39

\[\text{5' NTR} \quad \text{Ubi} \quad \text{Luc} \quad \text{EMCV} \quad \text{IRES} \quad \text{Npr} \quad \text{p7} \quad \text{NS2} \quad \text{NS3} \quad \text{NS4A} \quad \text{NS4B} \quad \text{NS5A} \quad \text{NS5B} \quad \text{3' NTR} \]

BVD39-NS2

\[\text{5' NTR} \quad \text{Ubi} \quad \text{Luc} \quad \text{EMCV} \quad \text{IRES} \quad \text{NS2} \quad \text{NS3} \quad \text{NS4A} \quad \text{NS4B} \quad \text{NS5A} \quad \text{NS5B} \quad \text{3' NTR} \]

J6/JFH1-RL HCV

\[\text{5' NTR} \quad C \quad E1 \quad E2 \quad p7 \quad \text{NS2} \quad \text{NS3} \quad \text{NS4A} \quad \text{NS4B} \quad \text{NS5A} \quad \text{NS5B} \quad \text{3' NTR} \]

\[\Delta C \quad 2A Ub \]

B

BVD39

Fold change

0 24 48 72 96 120

Hours post transfection

D

J6/JFH1-RL HCV

Fold change

0 24 48 72 96 120

Hours post transfection

C

BVD39

Fold change

0 24 48 72 96 120

Hours post transfection

\[\text{Bsr} \quad \text{TRIM56} \quad \text{C24A} \quad \text{CC21/24AA} \]

Downloaded from http://jvi.asm.org on June 30, 2017 by guest
Wang et al, Fig. 7

A. boTRIM56

B. Mock, SeV, plC, pdAdT

C. BVD39

Fold change

Hours post transfection
Wang et al, Fig. 8

A

B

C

D

E

F

MOI

TRIM56

Δ693-750

Bsr

Days post transfection

MOI

Δ693-750

Bsr

Days post transfection

Days post transfection

Days post transfection
Wang et al, Fig. 9