Broad-spectrum anti-HIV Potential of a Peptide HIV-1 Entry Inhibitor

Simon Cocklin¹*, Hosahudya Gopi¹, Bianca Querido², Manideepthi Nimmagadda², Syna Kuriakose¹, Claudia Cicala³, Sandya Ajith¹, Sabine Baxter¹, James Arthos³, Julio Martin-Garcia², Irwin M. Chaiken¹

¹ Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA
² Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA
³ Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA

* To whom correspondence should be addressed:

Simon Cocklin, PhD.
Drexel University College of Medicine,
11313 New College Building,
MS #497, 245 N. 15th St.
Philadelphia, PA 19102
Phone: (215) 762-3535.
Fax: (215) 762-4452.
e-mail: sc349@drexel.edu

Abstract Word Count: 100
Text Word Count: 1237
Running Title: Neutralization of non-clade B HIV-1 viruses by HNG-105
Abstract

The AIDS epidemic continues to spread at an alarming rate world-wide, especially in developing countries. One approach to solving this problem is the generation of anti-HIV compounds with inhibition spectra broad enough to include globally prevailing forms of the virus. We have examined the HIV-1 envelope specificity of a recently identified entry inhibitor candidate, HNG-105, using surface plasmon resonance (SPR) spectroscopy and pseudoviral inhibition assays. The combined results suggest that the HNG-105 molecule may be effective across the HIV-1 subtypes and highlight its potential as a lead for developing therapeutic and microbicidal agents to help combat the spread of AIDS.
Human immunodeficiency virus-1 (HIV-1), the major pathogen responsible for the AIDS pandemic, is among the most genetically diverse viral pathogens described to date, with isolates being able to be divided into groups, subtypes and circulating recombinant forms (CRFs). The group M viruses, which are the most widespread and account for approximately 99% of the infections worldwide, can be further subdivided into nine distinct genetic subtypes, or clades (1, 16). These clades show characteristic geographic localization with Clade B viruses dominating Europe, the Americas, and Australia, and Clade C, which presently infects more people worldwide than any other clade, being most prevalent in southern Africa, China, and India (5, 16, 21, 26). Despite the prevalence of subtype C, most of the antiretroviral drugs available to treat HIV-1 have been developed in the western world using \textit{in vitro} studies of subtype B isolates. However, there is a growing body of evidence that the different subtypes, and in particular the subtypes C viruses, have unique antigenic, infectivity and replicatory characteristics (1, 16, 26). Therefore, in the development of prophylactics, topical microbicides, and eventually in the generation of a viable vaccine, HIV-1 genetic diversity and its potential consequences to naturally occurring and acquired drug resistance must be considered.

During the last several years a new class of antiretroviral drugs, often referred to as entry inhibitors, has emerged (5, 7, 10, 12, 22). This class of antiretroviral agents disrupts one or more steps involved in the initial docking, coreceptor binding, or fusion events that are crucial to the HIV infection process, by targeting components of the envelope proteins (2, 6, 23, 27, 30-32, 35). However, the therapeutic targeting of the envelope proteins, gp120 and gp41, is not without its potential pitfalls. Firstly, the Env gene is the most variable HIV-1 gene, with up to 35% sequence diversity between clades, 20% sequence diversity within a clade, and up to 10% sequence diversity within a single infected person (3). Secondly, by comparison of the recently determined unliganded structure of SIV gp120 (8) to the known liganded structures of HIV-1 gp120 (17, 20), and also indirectly via thermodynamic methods (29), gp120 is thought to be

Neutralization of non-clade B HIV-1 viruses by HNG-105
extremely flexible and undergo large structural rearrangement upon binding of its ligands, particularly CD4.

HNG-105 is an entry inhibitor generated by our group by the click conjugation of the 12p1 peptide and has been shown to work by inhibiting key interactions of gp120 (4, 11, 15). HNG-105 inhibits the interactions of both monomeric and trimeric soluble gp120 with sCD4, with this molecular inhibition translating to viral inhibition (14). Mechanistic studies of the inhibitory action of HNG-105 reveal that it works by a novel allosteric mechanism, interacting with a site other than that of the CD4 or coreceptor binding sites, and dramatically lowering the affinity of gp120 for either of its receptors (14). Given, the unique inhibitory mechanism, we wished to study the molecular consequences of HIV-1 envelope variation on the inhibitory action of HNG-105. It has been previously demonstrated that HNG-105 binds directly to the gp120 derived from the primary isolate HIV-1\textsubscript{YU-2}. However, no other direct binding or molecular inhibition data exist for different clade B envelopes or envelopes derived from viruses of other subtypes. We therefore measured the binding of HNG-105 to gp120 envelope proteins from several strains of HIV-1 from differing clades (Table 1, Column 1) using surface plasmon resonance (SPR) interaction analysis (Biacore® 3000 instrument). The respective gp120 proteins from the HIV-1 clades A, B C and D, and two major circulating recombinant forms, CRF01_AE, CRF07_BC, were immobilized on a CM5 sensor chip and exposed to different concentrations of HNG-105 (0.125 – 4 µM). An additional gp120 from the simian immunodeficiency virus PBj strain was also included. Nonspecific binding and instrument artifacts were accounted for by subtraction of the response from a control surface (anti-IL5R\textsubscript{α} antibody, 2B6R). HNG-105 was found to bind to all gp120s tested, with exception of the CRF01_AE, with equilibrium dissociation constants in the range 0.04 – 7 µM (Table 1, Column 2). This indicates a degree of conservation of the binding epitope across the subtypes studied. Like its parent peptide 12p1, HNG-105 did not bind to the gp120 derived from simian immunodeficiency virus SIV-PBj (9;Table 1, Column 2). Similarly we assessed whether or not HNG-105 could inhibit the pivotal interaction of the non-subtype B Neutralization of non-clade B HIV-1 viruses by HNG-105
gp120s with sCD4. Prior to the assessment of inhibitory effect, we characterized the interaction of sCD4 with a given gp120 under the conditions of the inhibition assay (Table 1, Column 3). Following this, sCD4 in the absence or presence of increasing amounts of peptide was then injected over the immobilized variant gp120s. Increasing concentrations of HNG-105 significantly inhibited the interaction of sCD4 with the gp120 variants which bound HNG-105, whereas those gp120s that did not interact with HNG-105 showed no effect. The inhibitory effect of HNG-105 on the gp120 – sCD4 interactions was quantified from the corresponding decrease in RU

\[\text{eq} \]

value at a given peptide concentration and used to derive the respective IC

\[50 \]

values (summarized in Table 1, Column 4). The derived IC

\[50 \]

values showed good correlation with the affinity (K

\[D \]) of HNG-105 for a given variant.

In addition to the establishment of molecular inhibition of the variant gp120s by HNG-105, we characterized its inhibitory action on HIV-1 viral entry using a pseudoviral single-round infection assay (25). Given the variability of the Env gene, we sought to characterize the efficacy of HNG-105 against a panel of viruses that embodied this diversity. We therefore chose HIV-1 variants isolated from diverse body compartments (periphery, central nervous system and brain) that embodied significant genetic diversity and included representatives from the globally prevalent subtypes A, B and C (Figure 2A and B). HNG-105 showed specific inhibition of viruses from all of the clades tested, albeit with differing efficacies. Interestingly, the subtype B peripheral isolate HIV-1

\[\text{BORI} \]

(34) was not sensitive to the inhibitory effects of HNG-105 over the concentration range studied. This is in stark contrast to the sensitivity displayed by the highly related HIV-1

\[\text{BORI-15} \]

isolate (34; Figure 2A), and to the biochemical data indicating that the monomeric forms of the gp120s from both of these strains bound and were affected by HNG-105 (Table 1). The major differences between these isolates (24, 25, 33), coupled with the localization of the potential binding site for HNG-105 (4, 14), suggests that one mechanism by which an isolate can be resistant to HNG-105 may be through conformational masking of the binding site in the context of the viral spike (18, 19). This concept of differential access to the Neutralization of non-clade B HIV-1 viruses by HNG-105.
HNG-105 binding site, which is thought to reside within the gp120 inner domain, is currently under investigation in our laboratory.

From this study and others, it is clear that variability in the component proteins of the viral envelope (gp41 and g120) has a modulatory effect upon the susceptibility of a given isolate to drugs that target viral entry. Subtype sequence variability can result in either a reduction in an entry inhibitor’s effectiveness (28) or in increased efficacy (13). Moreover, this study highlights the need to consider the effect of sequence variation on the conformation of the viral spike, and how that in turn affects susceptibility to entry inhibitors. Therefore, the correlation of biochemical binding analyses with virally-derived inhibition parameters for an extended panel of isolates not only should become routine in the clinical development of this class of antiviral, but may yield important information regarding the molecular mechanism of cell entry by HIV-1.
Acknowledgements

This research was supported by the National Institutes of Health (NIH) grants, P01 GM 056550-08/C210JC (IMC) and R21 NS047970-03 (JMG).
References

Neutralization of non-clade B HIV-1 viruses by HNG-105

Figure Legends

Figure 1: (A) Diagram illustrating the HNG-105 conjugate peptide. Sensorgrams depicting the interaction of HNG-105 with 92UG037-08 – Clade A (B), 96ZM651 – Clade C (C), and 90CM243 – CRF01_AE (D). HNG-105 at concentrations of 0.125, 0.25, 0.5, 1, 2, and 4 µM are shown. Black lines indicate experimental data, whereas red lines indicate fitting to a 1:1 Langmuir binding model with a parameter included for mass transport.

Figure 2: Inhibition of pseudotype infection by HNG-105. Recombinant luciferase-containing viruses pseudotyped with the envelope proteins from different HIV-1 isolates were used in single-round infection assays in the presence of increasing concentrations of HNG-105. HOS cells stably expressing CD4 and CCR5 were used as target cells for R5 viruses, whereas U87 cells stably expressing CD4 and CXCR4 were used for the X4 viruses. For the sake of clarity, the data has been split between two panels, A and B. The particular subtype of the HIV-1 strain is indicated in parentheses next to the variant name.
Neutralization of non-clade B HIV-1 viruses by HNG-105
<table>
<thead>
<tr>
<th>Variant</th>
<th>Affinity for HNG-105 (K_D)</th>
<th>Affinity for sCD4 (K_D)</th>
<th>HNG-105 IC_50 sCD4</th>
</tr>
</thead>
<tbody>
<tr>
<td>92UG037-08 (A)</td>
<td>1.9 µM</td>
<td>15.8 nM</td>
<td>666.1 nM</td>
</tr>
<tr>
<td>92TH014-12 (B)</td>
<td>83.2 nM</td>
<td>19.0 nM</td>
<td>88.4 nM</td>
</tr>
<tr>
<td>92US715-06 (B)</td>
<td>6.8 µM</td>
<td>63.3 nM</td>
<td>5.1 µM</td>
</tr>
<tr>
<td>BORI-15 (B)</td>
<td>291.0 nM</td>
<td>5.4 nM</td>
<td>446.0 nM</td>
</tr>
<tr>
<td>BORI (B)</td>
<td>381 nM</td>
<td>14.4 nM</td>
<td>457 nM</td>
</tr>
<tr>
<td>BaL (B)</td>
<td>156.0 nM</td>
<td>5.7 nM</td>
<td>312.0 nM</td>
</tr>
<tr>
<td>YU-2 (B)</td>
<td>38.6 nM</td>
<td>14.2 nM</td>
<td>187.5 nM</td>
</tr>
<tr>
<td>SF162 (B)</td>
<td>70.4 nM</td>
<td>30.3 nM</td>
<td>253.0 nM</td>
</tr>
<tr>
<td>IIIB-8X (B)</td>
<td>176.0 nM</td>
<td>9.0 nM</td>
<td>230.8 nM</td>
</tr>
<tr>
<td>93MW959 (C)</td>
<td>39.8 nM</td>
<td>5.3 nM</td>
<td>104.6 nM</td>
</tr>
<tr>
<td>96ZM651 (C)</td>
<td>136.7 nM</td>
<td>97.2 nM</td>
<td>230.4 nM</td>
</tr>
<tr>
<td>92UG021-9 (D)</td>
<td>254.0 nM</td>
<td>53.5 nM</td>
<td>865.0 nM</td>
</tr>
<tr>
<td>97CN001-CN54 (BC)</td>
<td>454 nM</td>
<td>15.0 nM</td>
<td>441.5 nM</td>
</tr>
<tr>
<td>90CM243 (AE)</td>
<td>-</td>
<td>21.8 nM</td>
<td>Not applicable</td>
</tr>
<tr>
<td>SIV-PBj</td>
<td>-</td>
<td>150.0 nM</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Table 1: Direct binding affinity to HNG-105 and sCD4, along with IC_50 values for HNG-105-mediated inhibition of the sCD4 interaction with gp120 variants. The subtype of a particular variant is indicated in parentheses. The average kinetic parameters (association [k_a] and dissociation [k_d] rates) generated from a minimum of 4 data sets were used to define equilibrium dissociation constants (K_D). Similarly, IC_50 values were derived from a minimum of 2 data sets.