Transfer Ribonucleic Acid Synthetase Activity
Associated with Avian Myeloblastosis Virus

ELEANOR ERIKSON AND R. L. ERIKSON

Department of Pathology, University of Colorado Medical Center, Denver, Colorado 80220

Received for publication 28 October 1971

Avian myeloblastosis virions purified by conventional techniques were shown to be associated with or to contain transfer ribonucleic acid synthetase activity. Arginine, tryptophan, cystine, and lysine synthetase activities were observed.

A number of enzyme activities have been found to be associated with the virions of ribonucleic acid (RNA) tumor viruses. Adenosine triphosphatase and ribonuclease activities associated with avian myeloblastosis virus (AMV) have been known for some time (9, 10). Since the discovery of deoxyribonucleic acid (DNA) polymerase in the virions (1, 13), the list of virion-associated enzymes has increased (6-8). Some of these enzyme activities are probably related to the transfer of the genetic information in the virus into DNA which can be integrated into the infected cell in a stable form (12).

The virions of RNA tumor viruses contain low-molecular-weight RNA, a portion of which, at least in some cases, appears to be host transfer RNA (tRNA) which is not sensitive to ribonuclease while it is associated with the virion (2, 3, 5, 14, 15). This observation raises questions concerning essential roles for tRNA in the early events of viral infection. At this time, no published evidence is available about the function of virion tRNA. Participation of tRNA in the early events of infection might occur at the level of aminoacylation by an amino acid synthetase brought into the cell by the virion. Consequently, we examined AMV for several tRNA synthetase activities and report the results in this communication.

MATERIALS AND METHODS

Preparation and purification of AMV and preparation of tRNA and chick embryo synthetases have been described previously (4, 5). The assay for aminoacylation of tRNA was carried out as described previously (4).

RESULTS AND DISCUSSION

Test for synthetase activities. In the standard aminoacylation procedure, the synthetase activity present in AMV preparations was compared with that in enzymes partially purified from chick embryos. Chick embryo synthetases were used in these experiments to verify that conditions of charging were adequate, and to determine the presence of a particular acceptor RNA. The tRNA used in these experiments was originally extracted from 10- to 12-day-old chick embryos and had been deacylated and purified by sucrose gradient sedimentation.

The results presented in Table 1 were obtained by use of 150 μg of viral total protein or 200 μg of chick embryo enzyme protein and 20 μg of tRNA per reaction mixture. There was little effect of endogenous viral tRNA in these experiments because the virus contributes less than 1 μg of tRNA per reaction. The results (Table 1) indicate that several synthetase activities are associated with the virion. Virus that had not been treated with the nonionic detergent Nonidet P-40 yielded no activity in the assays used. Therefore, in this respect, the enzyme activity is presumably protected by a membrane similar to the DNA polymerase activity in the virion (13). The conditions used in the reactions carried out here have not been optimized for the aminoacylation of any particular tRNA. The values shown are relative and give only a qualitative indication of activity.

Analysis of the product of the reaction. To demonstrate that an aminoacyl tRNA had been formed in the reaction, 750 μg of AMV was used to charge 100 μg of 32P-labeled chick embryo tRNA for 20 min with tryptophan as described above. The reaction mixture was then adjusted to pH 4.85 with sodium acetate, and was extracted with phenol three times. The nucleic acid was precipitated twice with ethanol and centrifuged through a sucrose gradient with 16S RNA as a sedimentation rate marker. As shown in Fig. 1, the 3H-tryptophan and the 32P-labeled tRNA have sedimentation coefficients of approximately 4S. The 32P-labeled tRNA shows evidence of degra-
TABLE 1. Amount (picomoles) of amino acid accepted per 20 µg of tRNA

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Chick embryo enzyme</th>
<th>AMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>47.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>1.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Cystine</td>
<td>4.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Lysine</td>
<td>40.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>15.5</td>
<td><0.003</td>
</tr>
<tr>
<td>Leucine</td>
<td>3.9</td>
<td>0.040</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>6.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>20.9</td>
<td><0.2</td>
</tr>
</tbody>
</table>

* Conditions of aminoacylation were as follows. Each reaction was carried out in 0.3 ml of buffer [0.1 M tris(hydroxymethyl)aminomethane, pH 8.0, 0.01 M MgCl₂, 0.01 M KCl, 0.006 M mercaptoethanol] containing 2 µmoles of adenosine triphosphate, 1 µmole of cytidine triphosphate, 1 µCi of ³H-arginine, and, in the reactions with AMV, 0.05% Nonidet P-40; 150 µg of viral protein or 200 µg of chick embryo protein was used. Reactions were carried out at 37°C for 20 min, and were stopped by the addition of 1 ml of cold 10% trichloroacetic acid; acid-precipitable radioactivity was determined after filtration through membrane filters (Millipore Corp.). The ³H-amino acids were purchased from Schwarz/Mann (tryptophan, cystine), New England Nuclear Corp. (arginine), and Amersham (leucine, aspartic acid, lysine, phenylalanine, tyrosine).

![Diagram](http://jvi.asm.org/)

FIG. 1. Sedimentation of the reaction product. The nucleic acid prepared from the reaction mixture as described in the text was dissolved in 0.2 ml of sodium acetate (0.14 M, pH 4.85). A 100-µg amount of chick cell 16S ribosomal RNA was added, and this mixture was sedimented through a 5 to 20% sucrose gradient prepared with 0.15 M sodium acetate, pH 4.85. Sedimentation was in an SW 50.1 rotor (45,000 rev/min for 4 hr). Fractions of 0.15 ml were collected, absorbance was determined, and 0.1 ml of each fraction was used for determination of radioactivity. Recovery of radioactivity was 100% for ³P and 75% for ³H.

FIG. 2. Kinetics of aminoacylation of tRNA. Aminoacylation was measured at two virus concentrations. At each time point, 0.25 ml of the reaction mixture was added to 1 ml of 10% cold trichloroacetic acid, and acid-precipitable radioactivity was determined. Reaction mixtures contained: tRNA, 120 µg, and AMV protein, 450 µg in 1.8 ml (■); tRNA, 200 µg, and AMV protein, 1.52 mg in 3.0 ml (○). At 5 min, 1.2 ml was removed from the latter tube and reincubated after the addition of 80 µg of tRNA (□).
proportional to the amount of tRNA between 2 and 40 μg.

Sedimentation rate of enzyme activity. The virus used in these experiments was purified by equilibrium sedimentation in sucrose density gradients. To establish further the association of the virion and the enzyme activity, it was important to determine whether the enzyme activity sediments at the same rate as the virus. AMV labeled with \(^{32}\)P and purified by the usual procedures was sedimented through a 15 to 30% sucrose gradient for 30 min at 26,000 rev/min in an SW50 rotor. The distribution of the virus and enzyme activity was measured after sedimentation. The \(^{32}\)P-labeled AMV was shown to sediment with \(^3\)H-uridine-labeled virus in a separate experiment. As the results presented in Fig. 3 show, the virus and the enzyme activity have the same sedimentation rate. The incorporation observed without the addition of tRNA may be the result of virion tRNA.

In conclusion, we have demonstrated tRNA synthetase activities closely associated with the purified virion of AMV. The activity requires activation with nonionic detergent and therefore is presumably membrane-bound or contained within membranes. Unfortunately, unlike the DNA polymerase activity which has strong supporting evidence for its role in the replication of RNA tumor viruses (12), no supporting biological evidence can be brought forth to suggest an essential role for aminoacylation of specific tRNA preparations in the replication cycle of AMV.

ACKNOWLEDGMENTS

This research was supported by Public Health Service grant AI06844 from the National Institute of Allergy and Infectious Diseases.

Bruce Henry provided capable technical assistance.

LITERATURE CITED